557 research outputs found
Zero-variance principle for Monte Carlo algorithms
We present a general approach to greatly increase at little cost the
efficiency of Monte Carlo algorithms. To each observable to be computed we
associate a renormalized observable (improved estimator) having the same
average but a different variance. By writing down the zero-variance condition a
fundamental equation determining the optimal choice for the renormalized
observable is derived (zero-variance principle for each observable separately).
We show, with several examples including classical and quantum Monte Carlo
calculations, that the method can be very powerful.Comment: 9 pages, Latex, to appear in Phys. Rev. Let
Meron-Cluster Approach to Systems of Strongly Correlated Electrons
Numerical simulations of strongly correlated electron systems suffer from the
notorious fermion sign problem which has prevented progress in understanding if
systems like the Hubbard model display high-temperature superconductivity. Here
we show how the fermion sign problem can be solved completely with
meron-cluster methods in a large class of models of strongly correlated
electron systems, some of which are in the extended Hubbard model family and
show s-wave superconductivity. In these models we also find that on-site
repulsion can even coexist with a weak chemical potential without introducing
sign problems. We argue that since these models can be simulated efficiently
using cluster algorithms they are ideal for studying many of the interesting
phenomena in strongly correlated electron systems.Comment: 36 Pages, 13 figures, plain Late
Quantum Monte Carlo Loop Algorithm for the t-J Model
We propose a generalization of the Quantum Monte Carlo loop algorithm to the
t-J model by a mapping to three coupled six-vertex models. The autocorrelation
times are reduced by orders of magnitude compared to the conventional local
algorithms. The method is completely ergodic and can be formulated directly in
continuous time. We introduce improved estimators for simulations with a local
sign problem. Some first results of finite temperature simulations are
presented for a t-J chain, a frustrated Heisenberg chain, and t-J ladder
models.Comment: 22 pages, including 12 figures. RevTex v3.0, uses psf.te
Bulk spectral function sum rule in QCD-like theories with a holographic dual
We derive the sum rule for the spectral function of the stress-energy tensor
in the bulk (uniform dilatation) channel in a general class of strongly coupled
field theories. This class includes theories holographically dual to a theory
of gravity coupled to a single scalar field, representing the operator of the
scale anomaly. In the limit when the operator becomes marginal, the sum rule
coincides with that in QCD. Using the holographic model, we verify explicitly
the cancellation between large and small frequency contributions to the
spectral integral required to satisfy the sum rule in such QCD-like theories.Comment: 16 pages, 2 figure
Metabolite profiling of barley flag leaves under drought and combined heat and drought stress reveals metabolic QTLs for metabolites associated with antioxidant defense
Anomalous Zero Sound
We show that the anomalous term in the current, recently suggested by Son and
Yamamoto, modifies the structure of the zero sound mode in the Fermi liquid in
a magnetic field.Comment: 14 pages, 2 figure
The chemopreventive polyphenol Curcumin prevents hematogenous breast cancer metastases in immunodeficient mice
Dissemination of metastatic cells probably occurs long before diagnosis of the primary tumor. Metastasis during early phases of carcinogenesis in high risk patients is therefore a potential prevention target. The plant polyphenol Curcumin has been proposed for dietary prevention of cancer. We therefore examined its effects on the human breast cancer cell line MDA-MB-231 in vitro and in a mouse metastasis model. Curcumin strongly induces apoptosis in MDA- MB- 231 cells in correlation with reduced activation of the survival pathway NF kappa B, as a consequence of diminished I kappa B and p65 phosphorylation. Curcumin also reduces the expression of major matrix metalloproteinases (MMPs) due to reduced NF kappa B activity and transcriptional downregulation of AP-1. NF kappa B/p65 silencing is sufficient to downregulate c-jun and MMP expression. Reduced NF kappa B/AP-1 activity and MMP expression lead to diminished invasion through a reconstituted basement membrane and to a significantly lower number of lung metastases in immunodeficient mice after intercardiac injection of 231 cells (p=0.0035). 68% of Curcumin treated but only 17% of untreated animals showed no or very few lung metastases, most likely as a consequence of down-regulation of NF kappa B/AP-1 dependent MMP expression and direct apoptotic effects on circulating tumor cells but not on established metastases. Dietary chemoprevention of metastases appears therefore feasible. Copyright (c) 2007 S. Karger AG, Basel
Superconductivity from correlated hopping
We consider a chain described by a next-nearest-neighbor hopping combined
with a nearest-neighbor spin flip. In two dimensions this three-body term
arises from a mapping of the three-band Hubbard model for CuO planes to a
generalized model and for large O-O hopping favors resonance-valence-bond
superconductivity of predominantly -wave symmetry. Solving the ground state
and low-energy excitations by analytical and numerical methods we find that the
chain is a Luther-Emery liquid with correlation exponent , where is the particle density.Comment: 10 pages, RevTeX 3.0 + 2 PostScript figs. Accepted for publication in
Phys.Rev.
Holographic rho mesons in an external magnetic field
We study the rho meson in a uniform magnetic field eB using a holographic
QCD-model, more specifically a D4/D8/Dbar8 brane setup in the confinement phase
at zero temperature with two quenched flavours. The parameters of the model are
fixed by matching to corresponding dual field theory parameters at zero
magnetic field. We show that the up- and down-flavour branes respond
differently to the presence of the magnetic field in the dual QCD-like theory,
as expected because of the different electromagnetic charge carried by up- and
down-quark. We discuss how to recover the Landau levels, indicating an
instability of the QCD vacuum at eB = m_rho^2 towards a phase where charged rho
mesons are condensed, as predicted by Chernodub using effective QCD-models. We
improve on these existing effective QCD-model analyses by also taking into
account the chiral magnetic catalysis effect, which tells us that the
constituent quark masses rise with eB. This turns out to increase the value of
the critical magnetic field for the onset of rho meson condensation to eB = 1.1
m_rho^2 = 0.67 GeV^2. We briefly discuss the influence of pions, which turn out
to be irrelevant for the condensation in the approximation made.Comment: 26 pages, 10 .pdf figures, v2: version accepted for publication in
JHE
- …
