867 research outputs found
Dynamical instability of a spin spiral in an interacting Fermi gas as a probe of the Stoner transition
We propose an experiment to probe ferromagnetic phenomena in an ultracold
Fermi gas, while alleviating the sensitivity to three-body loss and competing
many-body instabilities. The system is initialized in a small pitch spin
spiral, which becomes unstable in the presence of repulsive interactions. To
linear order the exponentially growing collective modes exhibit critical
slowing down close to the Stoner transition point. Also, to this order, the
dynamics are identical on the paramagnetic and ferromagnetic sides of the
transition. However, we show that scattering off the exponentially growing
modes qualitatively alters the collective mode structure. The critical slowing
down is eliminated and in its place a new unstable branch develops at large
wave vectors. Furthermore, long-wavelength instabilities are quenched on the
paramagnetic side of the transition. We study the experimental observation of
the instabilities, specifically addressing the trapping geometry and how
phase-contrast imaging will reveal the emerging domain structure. These probes
of the dynamical phenomena could allow experiments to detect the transition
point and distinguish between the paramagnetic and ferromagnetic regimes
Energy balance of a laser ablation plume expanding in a background gas
The energy balance of a laser ablation plume in an
ambient gas for nanosecond pulses has been investigated on
the basis of the model of Predtechensky and Mayorov (PM),
which provides a relatively simple and clear description of
the essential hydrodynamics. This approach also leads to an
insightful description in dimensionless units of how the initial
kinetic energy of the plume is dissipated into kinetic and
thermal energy of the background gas. Eventually when the
plume has stopped, the initial kinetic energy of the plume is
converted into thermal energy of the plume and background
gas
Spin drag in an ultracold Fermi gas on the verge of a ferromagnetic instability
Recent experiments [Jo et al., Science 325, 1521 (2009)] have presented
evidence of ferromagnetic correlations in a two-component ultracold Fermi gas
with strong repulsive interactions. Motivated by these experiments we consider
spin drag, i.e., frictional drag due to scattering of particles with opposite
spin, in such systems. We show that when the ferromagnetic state is approached
from the normal side, the spin drag relaxation rate is strongly enhanced near
the critical point. We also determine the temperature dependence of the spin
diffusion constant. In a trapped gas the spin drag relaxation rate determines
the damping of the spin dipole mode, which therefore provides a precursor
signal of the ferromagnetic phase transition that may be used to experimentally
determine the proximity to the ferromagnetic phase.Comment: 4 pages, 3 fig
Zero sound in a single component fermion - Bose Einstein Condensate mixture
The resonant dynamics of mediated interactions supports zero-sound in a cold
atom degenerate mixture of a single component fermion gas and a Bose-Einstein
condensate (BEC). We characterize the onset of instability in the phase
separation of an unstable mixture and we find a rich collective mode structure
for stable mixtures with one undamped mode that exhibits an avoided crossing
and a Landau-damped mode that terminates.Comment: 4 pages, 2 figure
Phonon spectrum and dynamical stability of a quantum degenerate Bose-Fermi mixture
We calculate the phonon excitation spectrum in a zero-temperature
boson-fermion mixture. We show how the sound velocity changes due to the
boson-fermion interaction and we determine the dynamical stability regime of a
homogeneous mixture. We identify a resonant phonon-exchange interaction between
the fermions as the physical mechanism leading to the instability.Comment: 4 pages, 3 figure
The effect of relative plasma plume delay on the properties of complex oxide films grown by multi-laser multi-target combinatorial pulsed laser deposition
We report the effects of relative time delay of plasma plumes on thin garnet crystal films fabricated by dual-beam, combinatorial pulsed laser deposition. Relative plume delay was found to affect both the lattice constant and elemental composition of mixed Gd3Ga5O12 (GGG) and Gd3Sc2Ga5O12 (GSGG) films. Further analysis of the plasmas was undertaken using a Langmuir probe, which revealed that for relative plume delays shorter than ~200 µs, the second plume travels through a partial vacuum created by the first plume, leading to higher energy ion bombardment of the growing film. The resulting in-plane stresses are consistent with the transition to a higher value of lattice constant normal to the film plane that was observed around this delay value. At delays shorter than ~10 µs, plume propagation was found to overlap, leading to scattering of lighter ions from the plume and a change in stoichiometry of the resultant films
Finite-Connectivity Spin-Glass Phase Diagrams and Low Density Parity Check Codes
We obtain phase diagrams of regular and irregular finite connectivity
spin-glasses. Contact is firstly established between properties of the phase
diagram and the performances of low density parity check codes (LDPC) within
the Replica Symmetric (RS) ansatz. We then study the location of the dynamical
and critical transition of these systems within the one step Replica Symmetry
Breaking theory (RSB), extending similar calculations that have been performed
in the past for the Bethe spin-glass problem. We observe that, away from the
Nishimori line, in the low temperature region, the location of the dynamical
transition line does change within the RSB theory, in comparison with the (RS)
case. For LDPC decoding over the binary erasure channel we find, at zero
temperature and rate R=1/4 an RS critical transition point located at p_c =
0.67 while the critical RSB transition point is located at p_c = 0.7450, to be
compared with the corresponding Shannon bound 1-R. For the binary symmetric
channel (BSC) we show that the low temperature reentrant behavior of the
dynamical transition line, observed within the RS ansatz, changes within the
RSB theory; the location of the dynamical transition point occurring at higher
values of the channel noise. Possible practical implications to improve the
performances of the state-of-the-art error correcting codes are discussed.Comment: 21 pages, 15 figure
Limits to Sympathetic Evaporative Cooling of a Two-Component Fermi Gas
We find a limit cycle in a quasi-equilibrium model of evaporative cooling of
a two-component fermion gas. The existence of such a limit cycle represents an
obstruction to reaching the quantum ground state evaporatively. We show that
evaporatively the \beta\mu ~ 1. We speculate that one may be able to cool an
atomic fermi gas further by photoassociating dimers near the bottom of the
fermi sea.Comment: Submitted to Phys. Rev
Subextensive singularity in the 2D Ising spin glass
The statistics of low energy states of the 2D Ising spin glass with +1 and -1
bonds are studied for square lattices with , and =
0.5, where is the fraction of negative bonds, using periodic and/or
antiperiodic boundary conditions. The behavior of the density of states near
the ground state energy is analyzed as a function of , in order to obtain
the low temperature behavior of the model. For large finite there is a
range of in which the heat capacity is proportional to .
The range of in which this behavior occurs scales slowly to as
increases. Similar results are found for = 0.25. Our results indicate that
this model probably obeys the ordinary hyperscaling relation , even though . The existence of the subextensive behavior is
attributed to long-range correlations between zero-energy domain walls, and
evidence of such correlations is presented.Comment: 13 pages, 7 figures; final version, to appear in J. Stat. Phy
First operation of a double phase LAr Large Electron Multiplier Time Projection Chamber with a two-dimensional projective readout anode
We have previously reported on the construction and successful operation of
the novel double phase Liquid Argon Large Electron Multiplier Time Projection
Chamber (LAr LEM-TPC). This detector concept provides a 3D-tracking and
calorimetric device capable of adjustable charge amplification, a promising
readout technology for next-generation neutrino detectors and direct Dark
Matter searches. In this paper, we report on the first operation of a LAr
LEM-TPC prototype - with an active area of 1010 cm and 21 cm drift
length - equipped with a single 1 mm thick LEM amplifying stage and a two
dimensional projective readout anode. Cosmic muon events were collected, fully
reconstructed and used to characterize the performance of the chamber. The
obtained signals provide images of very high quality and the energy loss
distributions of minimum ionizing tracks give a direct estimate of the
amplification. We find that a stable gain of 27 can be achieved with this
detector configuration corresponding to a signal-over-noise ratio larger than
200 for minimum ionizing tracks. The decoupling of the amplification stage and
the use of the 2D readout anode offer several advantages which are described in
the text.Comment: 25 pages, 17 figure
- …
