31,064 research outputs found
Cooperative Access in Cognitive Radio Networks: Stable Throughput and Delay Tradeoffs
In this paper, we study and analyze fundamental throughput-delay tradeoffs in
cooperative multiple access for cognitive radio systems. We focus on the class
of randomized cooperative policies, whereby the secondary user (SU) serves
either the queue of its own data or the queue of the primary user (PU) relayed
data with certain service probabilities. The proposed policy opens room for
trading the PU delay for enhanced SU delay. Towards this objective, stability
conditions for the queues involved in the system are derived. Furthermore, a
moment generating function approach is employed to derive closed-form
expressions for the average delay encountered by the packets of both users.
Results reveal that cooperation expands the stable throughput region of the
system and significantly reduces the delay at both users. Moreover, we quantify
the gain obtained in terms of the SU delay under the proposed policy, over
conventional relaying that gives strict priority to the relay queue.Comment: accepted for publication in IEEE 12th Intl. Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 201
Cooperation and Underlay Mode Selection in Cognitive Radio Network
In this research, we proposes a new method for cooperation and underlay mode
selection in cognitive radio networks. We characterize the maximum achievable
throughput of our proposed method of hybrid spectrum sharing. Hybrid spectrum
sharing is assumed where the Secondary User (SU) can access the Primary User
(PU) channel in two modes, underlay mode or cooperative mode with admission
control. In addition to access the channel in the overlay mode, secondary user
is allowed to occupy the channel currently occupied by the primary user but
with small transmission power. Adding the underlay access modes attains more
opportunities to the secondary user to transmit data. It is proposed that the
secondary user can only exploits the underlay access when the channel of the
primary user direct link is good or predicted to be in non-outage state.
Therefore, the secondary user could switch between underlay spectrum sharing
and cooperation with the primary user. Hybrid access is regulated through
monitoring the state of the primary link. By observing the simulation results,
the proposed model attains noticeable improvement in the system performance in
terms of maximum secondary user throughput than the conventional cooperation
and non-cooperation schemes
Two-layer classification and distinguished representations of users and documents for grouping and authorship identification
Most studies on authorship identification reported a drop in the identification result when the number of authors exceeds 20-25. In this paper, we introduce a new user representation to address this problem and split classification across two layers. There are at least 3 novelties in this paper. First, the two-layer approach allows applying authorship identification over larger number of authors (tested over 100 authors), and it is extendable. The authors are divided into groups that contain smaller number of authors. Given an anonymous document, the primary layer detects the group to which the document belongs. Then, the secondary layer determines the particular author inside the selected group. In order to extract the groups linking similar authors, clustering is applied over users rather than documents. Hence, the second novelty of this paper is introducing a new user representation that is different from document representation. Without the proposed user representation, the clustering over documents will result in documents of author(s) distributed over several clusters, instead of a single cluster membership for each author. Third, the extracted clusters are descriptive and meaningful of their users as the dimensions have psychological backgrounds. For authorship identification, the documents are labelled with the extracted groups and fed into machine learning to build classification models that predicts the group and author of a given document. The results show that the documents are highly correlated with the extracted corresponding groups, and the proposed model can be accurately trained to determine the group and the author identity
VisualNet: Commonsense knowledgebase for video and image indexing and retrieval application
The rapidly increasing amount of video collections, available on the web or via broadcasting, motivated research towards building intelligent tools for searching, rating, indexing and retrieval purposes. Establishing a semantic representation of visual data, mainly in textual form, is one of the important tasks. The time needed for building and maintaining Ontologies and knowledge, especially for wide domain, and the efforts for integrating several approaches emphasize the need for unified generic commonsense knowledgebase for visual applications. In this paper, we propose a novel commonsense knowledgebase that forms the link between the visual world and its semantic textual representation. We refer to it as "VisualNet". VisualNet is obtained by our fully automated engine that constructs a new unified structure concluding the knowledge from two commonsense knowledgebases, namely WordNet and ConceptNet. This knowledge is extracted by performing analysis operations on WordNet and ConceptNet contents, and then only useful knowledge in visual domain applications is considered. Moreover, this automatic engine enables this knowledgebase to be developed, updated and maintained automatically, synchronized with any future enhancement on WordNet or ConceptNet. Statistical properties of the proposed knowledgebase, in addition to an evaluation of a sample application results, show coherency and effectiveness of the proposed knowledgebase and its automatic engine
On the equality of Bajraktarevi\'c means to quasi-arithmetic means
This paper offers a solution of the functional equation where is a fixed number,
is strictly monotone, and is an
arbitrary unknown function. As an immediate application, we shed new light on
the equality problem of Bajraktarevi\'c means with quasi-arithmetic means
Optimal Prefix Codes with Fewer Distinct Codeword Lengths are Faster to Construct
A new method for constructing minimum-redundancy binary prefix codes is
described. Our method does not explicitly build a Huffman tree; instead it uses
a property of optimal prefix codes to compute the codeword lengths
corresponding to the input weights. Let be the number of weights and be
the number of distinct codeword lengths as produced by the algorithm for the
optimum codes. The running time of our algorithm is . Following
our previous work in \cite{be}, no algorithm can possibly construct optimal
prefix codes in time. When the given weights are presorted our
algorithm performs comparisons.Comment: 23 pages, a preliminary version appeared in STACS 200
- …
