8 research outputs found

    Deeply Virtual Neutrino Scattering (DVNS)

    Full text link
    We introduce the study of neutrino scattering off protons in the deeply virtual kinematics, which describes under a unified formalism elastic and deep inelastic neutrino scattering. A real final state photon and a recoiling nucleon are detected in the few GeV (t0.25|t|\sim 0.2-5 GeV) region of momentum transfer. This is performed via an extension of the notion of deeply virtual Compton scattering, or DVCS, to the case of a neutral current exchange. The relevance of this process and of other similar exclusive processes for the study of neutrino interactions in neutrino factories for GeV neutrinos is pointed out.Comment: 28 pages, 12 figures, revised final version, to appear in JHE

    Theory of neutrinoless double beta decay

    Full text link
    Neutrinoless double beta decay, which is a very old and yet elusive process, is reviewed. Its observation will signal that lepton number is not conserved and the neutrinos are Majorana particles. More importantly it is our best hope for determining the absolute neutrino mass scale at the level of a few tens of meV. To achieve the last goal certain hurdles have to be overcome involving particle, nuclear and experimental physics. Nuclear physics is important for extracting the useful information from the data. One must accurately evaluate the relevant nuclear matrix elements, a formidable task. To this end, we review the sophisticated nuclear structure approaches recently been developed, which give confidence that the needed nuclear matrix elements can be reliably calculated. From an experimental point of view it is challenging, since the life times are long and one has to fight against formidable backgrounds. If a signal is found, it will be a tremendous accomplishment. Then, of course, the real task is going to be the extraction of the neutrino mass from the observations. This is not trivial, since current particle models predict the presence of many mechanisms other than the neutrino mass, which may contribute or even dominate this process. We will, in particular, consider the following processes: (i)The neutrino induced, but neutrino mass independent contribution. (ii)Heavy left and/or right handed neutrino mass contributions. (iii)Intermediate scalars (doubly charged etc). (iv)Supersymmetric (SUSY) contributions. We will show that it is possible to disentangle the various mechanisms and unambiguously extract the important neutrino mass scale, if all the signatures of the reaction are searched in a sufficient number of nuclear isotopes.Comment: 104 pages, 6 tables, 25 figures.References added. To appear in ROP (Reports on Progress in Physics), copyright RO

    Projected background and sensitivity of AMoRE-II

    No full text
    Abstract AMoRE-II aims to search for neutrinoless double beta decay ( 0νββ0\nu \beta \beta 0 ν β β ) with an array of 423 Li2100MoO4\hbox {Li}_2^{100}\hbox {MoO}_4 Li 2 100 MoO 4 crystals operating in the cryogenic system as the main phase of the Advanced Molybdenum-based Rare process Experiment (AMoRE). AMoRE has been planned to operate in three phases: AMoRE-pilot, AMoRE-I, and AMoRE-II. AMoRE-II is currently being installed at the Yemi Underground Laboratory, located approximately 1000 m deep in Jeongseon, Korea. The goal of the experiment is to reach an exclusion half-life sensitivity to the 0νββ0\nu \beta \beta 0 ν β β of 100^{100} 100 Mo on the level of T1/20νββ>6×1026T^{0\nu \beta \beta }_{1/2} > 6 \times 10^{26} T 1 / 2 0 ν β β > 6 × 10 26 year that covers completely the inverted Majorana neutrino mass hierarchy region of (15–46) meV. To achieve this, the background level of the experimental configurations and possible background sources of gamma and beta events should be well understood. We have intensively performed Monte Carlo simulations using the GEANT4 toolkit in all the experimental configurations with potential sources. We report the estimated background level that meets the 10410^{-4} 10 - 4 counts/(keV \cdot · kg \cdot · year) requirement for AMoRE-II in the Region Of Interest (ROI) and show the projected half-life sensitivity based on the simulation study

    High-energy astrophysics with neutrino telescopes

    No full text
    Neutrino astrophysics offers new perspectives on the Universe investigation: high energy neutrinos, produced by the most energetic phenomena in our Galaxy and in the Universe, carry complementary (if not exclusive) information about the cosmos with respect to photons. While the small interaction cross section of neutrinos allows them to come from the core of astrophysical objects, it is also a drawback, as their detection requires a large target mass. This is why it is convenient put huge cosmic neutrino detectors in natural locations, like deep underwater or under-ice sites. In order to supply for such extremely hostile environmental conditions, new frontiers technologies are under development. The aim of this work is to review the motivations for high energy neutrino astrophysics, the present status of experimental results and the technologies used in underwater/ice Cherenkov experiments, with a special focus on the efforts for the construction of a km3 scale detector in the Mediterranean Sea.Comment: 88 pages and 41 figure
    corecore