27,528 research outputs found
Convergence Analysis of an Inexact Feasible Interior Point Method for Convex Quadratic Programming
In this paper we will discuss two variants of an inexact feasible interior
point algorithm for convex quadratic programming. We will consider two
different neighbourhoods: a (small) one induced by the use of the Euclidean
norm which yields a short-step algorithm and a symmetric one induced by the use
of the infinity norm which yields a (practical) long-step algorithm. Both
algorithms allow for the Newton equation system to be solved inexactly. For
both algorithms we will provide conditions for the level of error acceptable in
the Newton equation and establish the worst-case complexity results
Time-Dependent Random Walks and the Theory of Complex Adaptive Systems
Motivated by novel results in the theory of complex adaptive systems, we
analyze the dynamics of random walks in which the jumping probabilities are
{\it time-dependent}. We determine the survival probability in the presence of
an absorbing boundary. For an unbiased walk the survival probability is
maximized in the case of large temporal oscillations in the jumping
probabilities. On the other hand, a random walker who is drifted towards the
absorbing boundary performs best with a constant jumping probability. We use
the results to reveal the underlying dynamics responsible for the phenomenon of
self-segregation and clustering observed in the evolutionary minority game.Comment: 5 pages, 2 figure
Negative Specific Heat in a Quasi-2D Generalized Vorticity Model
Negative specific heat is a dramatic phenomenon where processes decrease in
temperature when adding energy. It has been observed in gravo-thermal collapse
of globular clusters. We now report finding this phenomenon in bundles of
nearly parallel, periodic, single-sign generalized vortex filaments in the
electron magnetohydrodynamic (EMH) model for the unbounded plane under strong
magnetic confinement. We derive the specific heat using a steepest descent
method and a mean field property. Our derivations show that as temperature
increases, the overall size of the system increases exponentially and the
energy drops. The implication of negative specific heat is a runaway reaction,
resulting in a collapsing inner core surrounded by an expanding halo of
filaments.Comment: 12 pages, 3 figures; updated with revision
Constraining and Dark Energy with Gamma-Ray Bursts
An relationship with a small
scatter for current -ray burst (GRB) data was recently reported, where
is the beaming-corrected -ray energy and
is the peak energy in the local observer frame. By considering this
relationship for a sample of 12 GRBs with known redshift, peak energy, and
break time of afterglow light curves, we constrain the mass density of the
universe and the nature of dark energy. We find that the mass density
(at the confident level) for a flat
universe with a cosmological constant, and the parameter of an assumed
static dark-energy equation of state ().
Our results are consistent with those from type Ia supernovae. A larger sample
established by the upcoming {\em Swift} satellite is expected to provide
further constraints.Comment: 8 pages including 4 figures, to appear in ApJ Letters, typos
correcte
Topology of RNA-RNA interaction structures
The topological filtration of interacting RNA complexes is studied and the
role is analyzed of certain diagrams called irreducible shadows, which form
suitable building blocks for more general structures. We prove that for two
interacting RNAs, called interaction structures, there exist for fixed genus
only finitely many irreducible shadows. This implies that for fixed genus there
are only finitely many classes of interaction structures. In particular the
simplest case of genus zero already provides the formalism for certain types of
structures that occur in nature and are not covered by other filtrations. This
case of genus zero interaction structures is already of practical interest, is
studied here in detail and found to be expressed by a multiple context-free
grammar extending the usual one for RNA secondary structures. We show that in
time and space complexity, this grammar for genus zero
interaction structures provides not only minimum free energy solutions but also
the complete partition function and base pairing probabilities.Comment: 40 pages 15 figure
Origin of spontaneous electric dipoles in homonuclear niobium clusters
Surprisingly large spontaneous electric dipole moments recently observed in
homonuclear niobium clusters below 100 K (Moro el. al. Science 300, 1265
(2003)) are explained using first-principles electronic structure calculations.
The calculated moments for Nb(n) (n <= 15) closely follow the experimental data
in which large dipole moments are seen for n = 11-14. We establish that the
dipoles are strongly correlated with the geometrical asymmetry of the clusters.
The magnitude of the dipole moment is roughly proportional to the spread in the
principal moments of inertia and its direction tends to align along the axis of
the largest principal moment. Charge deformation densities reveal directional,
partially covalent bonds that enhance the formation of asymmetric geometries.
Classical simulations of the deflection of a cluster in a molecular beam reveal
that the electronic dipole may persist at higher temperatures, but is masked by
the rotational dynamics of the cluster
Long-term high fat feeding of rats results in increased numbers of circulating microvesicles with pro-inflammatory effects on endothelial cells
Obesity and type 2 diabetes lead to dramatically increased risks of atherosclerosis and CHD. Multiple mechanisms converge to promote atherosclerosis by increasing endothelial oxidative stress and up-regulating expression of pro-inflammatory molecules. Microvesicles (MV) are small ( < 1 μm) circulating particles that transport proteins and genetic material, through which they are able to mediate cell–cell communication and influence gene expression. Since MV are increased in plasma of obese, insulin-resistant and diabetic individuals, who often exhibit chronic vascular inflammation, and long-term feeding of a high-fat diet (HFD) to rats is a well-described model of obesity and insulin resistance, we hypothesised that this may be a useful model to study the impact of MV on endothelial inflammation. The number and cellular origin of MV from HFD-fed obese rats were characterised by flow cytometry. Total MV were significantly increased after feeding HFD compared to feeding chow (P< 0·001), with significantly elevated numbers of MV derived from leucocyte, endothelial and platelet compartments (P< 0·01 for each cell type). MV were isolated from plasma and their ability to induce reactive oxygen species (ROS) formation and vascular cell adhesion molecule (VCAM)-1 expression was measured in primary rat cardiac endothelial cells in vitro. MV from HFD-fed rats induced significant ROS (P< 0·001) and VCAM-1 expression (P= 0·0275), indicative of a pro-inflammatory MV phenotype in this model of obesity. These findings confirm that this is a useful model to further study the mechanisms by which diet can influence MV release and subsequent effects on cardio-metabolic health
Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life
This symposium was held at the NASA Ames Research Center, Moffett Field, California, July 24-27, 1990. The NASA exobiology investigators reported their recent research findings. Scientific papers were presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI)
Signal processing in local neuronal circuits based on activity-dependent noise and competition
We study the characteristics of weak signal detection by a recurrent neuronal
network with plastic synaptic coupling. It is shown that in the presence of an
asynchronous component in synaptic transmission, the network acquires
selectivity with respect to the frequency of weak periodic stimuli. For
non-periodic frequency-modulated stimuli, the response is quantified by the
mutual information between input (signal) and output (network's activity), and
is optimized by synaptic depression. Introducing correlations in signal
structure resulted in the decrease of input-output mutual information. Our
results suggest that in neural systems with plastic connectivity, information
is not merely carried passively by the signal; rather, the information content
of the signal itself might determine the mode of its processing by a local
neuronal circuit.Comment: 15 pages, 4 pages, in press for "Chaos
Electronic Structure, Local Moments and Transport in Fe_2VAl
Local spin density approximation calculations are used to elucidate
electronic and magnetic properties of Heusler structure Fe_2VAl. The compound
is found to be a low carrier density semimetal. The Fermi surface has small
hole pockets derived from a triply degenerate Fe derived state at Gamma
compensated by an V derived electron pocket at the X point. The ideal compound
is found to be stable against ferromagnetism. Fe impurities on V sites,
however, behave as local moments. Because of the separation of the hole and
electron pockets the RKKY interaction between such local moments should be
rapidly oscillating on the scale of its decay, leading to the likelihood of
spin-glass behavior for moderate concentrations of Fe on V sites. These
features are discussed in relation to experimental observations of an unusual
insulating state in this compound.Comment: 16 pages, RevTeX, 5 figure
- …
