3,462 research outputs found
Response to Being Informed of Weight Status and Body Fat Composition: Understandings, Reactions and Motivations to Achieve a Healthy Weight
Thermal Hall conductivity of marginal Fermi liquids subject to out-of plane impurities in high- cuprates
The effect of out-of-plane impurities on the thermal Hall conductivity
of in-plane marginal-Fermi-liquid (MFL) quasiparticles in
high- cuprates is examined by following the work on electrical Hall
conductivity by Varma and Abraham [Phys. Rev. Lett. 86, 4652
(2001)]. It is shown that the effective Lorentz force exerted by these
impurities is a weak function of energies of the MFL quasiparticles, resulting
in nearly the same temperature dependence of and ,
indicative of obedience of the Wiedemann-Franz law. The inconsistency of the
theoretical result with the experimental one is speculated to be the
consequence of the different amounts of out-of-plane impurities in the two
YBaCuO samples used for the and measurements.Comment: 5 pages, 2 eps figures; final versio
Can the Pioneer anomaly be of gravitational origin? A phenomenological answer
In order to satisfy the equivalence principle, any non-conventional mechanism
proposed to gravitationally explain the Pioneer anomaly, in the form in which
it is presently known from the so-far analyzed Pioneer 10/11 data, cannot leave
out of consideration its impact on the motion of the planets of the Solar
System as well, especially those orbiting in the regions in which the anomalous
behavior of the Pioneer probes manifested itself. In this paper we, first,
discuss the residuals of the right ascension \alpha and declination \delta of
Uranus, Neptune and Pluto obtained by processing various data sets with
different, well established dynamical theories (JPL DE, IAA EPM, VSOP). Second,
we use the latest determinations of the perihelion secular advances of some
planets in order to put on the test two gravitational mechanisms recently
proposed to accommodate the Pioneer anomaly based on two models of modified
gravity. Finally, we adopt the ranging data to Voyager 2 when it encountered
Uranus and Neptune to perform a further, independent test of the hypothesis
that a Pioneer-like acceleration can also affect the motion of the outer
planets of the Solar System. The obtained answers are negative.Comment: Latex2e, 26 pages, 6 tables, 2 figure, 47 references. It is the
merging of gr-qc/0608127, gr-qc/0608068, gr-qc/0608101 and gr-qc/0611081.
Final version to appear in Foundations of Physic
Stimulation of Beta Decay due to a Bose-Einstein Condensate
Nuclear processes can be stimulated by the presence of a macroscopic number
of bosons in one of the final states. We describe the conditions necessary to
observe the atom-stimulation of a beta decay process. The stimulation may be
observable if it becomes possible to produce a Bose-Einstein condensate with
the order of atoms in a trap.Comment: 7 pages, LaTeX, uses elsart.cls, home page at
http://online.anu.edu.au/Physics/Welcome.htm
Charmonium Absorption in the Meson-exchange Model
We review the meson-exchange model for charmonium absorption by hadrons. This
includes the construction of the interaction Lagrangians, the determination of
the coupling constants, the introduction of form factors, and the predicted
cross sections for absorption by both mesons and nucleons. We further
discuss the effects due to anomalous parity interactions, uncertainties in form
factors, constraints from chiral symmetry, and the change of charmed meson mass
in medium on the cross sections for charmonium absorption in hadronic matter.Comment: 10 pages, 2 figures. Talk given at Quark Matter 2002 (QM 2002),
Nantes, France, 18-24 July 2002. To appear in the proceedings (Nucl. Phys. A
LISA, binary stars, and the mass of the graviton
We extend and improve earlier estimates of the ability of the proposed LISA
(Laser Interferometer Space Antenna) gravitational wave detector to place upper
bounds on the graviton mass, m_g, by comparing the arrival times of
gravitational and electromagnetic signals from binary star systems. We show
that the best possible limit on m_g obtainable this way is ~ 50 times better
than the current limit set by Solar System measurements. Among currently known,
well-understood binaries, 4U1820-30 is the best for this purpose; LISA
observations of 4U1820-30 should yield a limit ~ 3-4 times better than the
present Solar System bound. AM CVn-type binaries offer the prospect of
improving the limit by a factor of 10, if such systems can be better understood
by the time of the LISA mission. We briefly discuss the likelihood that radio
and optical searches during the next decade will yield binaries that more
closely approach the best possible case.Comment: ReVTeX 4, 6 pages, 1 figure, submitted to Phys Rev
Nonlinear atom optics and bright gap soliton generation in finite optical lattices
We theoretically investigate the transmission dynamics of coherent matter
wave pulses across finite optical lattices in both the linear and the nonlinear
regimes. The shape and the intensity of the transmitted pulse are found to
strongly depend on the parameters of the incident pulse, in particular its
velocity and density: a clear physical picture for the main features observed
in the numerical simulations is given in terms of the atomic band dispersion in
the periodic potential of the optical lattice. Signatures of nonlinear effects
due the atom-atom interaction are discussed in detail, such as atom optical
limiting and atom optical bistability. For positive scattering lengths, matter
waves propagating close to the top of the valence band are shown to be subject
to modulational instability. A new scheme for the experimental generation of
narrow bright gap solitons from a wide Bose-Einstein condensate is proposed:
the modulational instability is seeded in a controlled way starting from the
strongly modulated density profile of a standing matter wave and the solitonic
nature of the generated pulses is checked from their shape and their
collisional properties
Bond-disordered Anderson model on a two dimensional square lattice - chiral symmetry and restoration of one-parameter scaling
Bond-disordered Anderson model in two dimensions on a square lattice is
studied numerically near the band center by calculating density of states
(DoS), multifractal properties of eigenstates and the localization length. DoS
divergence at the band center is studied and compared with Gade's result [Nucl.
Phys. B 398, 499 (1993)] and the powerlaw. Although Gade's form describes
accurately DoS of finite size systems near the band-center, it fails to
describe the calculated part of DoS of the infinite system, and a new
expression is proposed. Study of the level spacing distributions reveals that
the state closest to the band center and the next one have different level
spacing distribution than the pairs of states away from the band center.
Multifractal properties of finite systems furthermore show that scaling of
eigenstates changes discontinuously near the band center. This unusual behavior
suggests the existence of a new divergent length scale, whose existence is
explained as the finite size manifestation of the band center critical point of
the infinite system, and the critical exponent of the correlation length is
calculated by a finite size scaling. Furthermore, study of scaling of Lyapunov
exponents of transfer matrices of long stripes indicates that for a long stripe
of any width there is an energy region around band center within which the
Lyapunov exponents cannot be described by one-parameter scaling. This region,
however, vanishes in the limit of the infinite square lattice when
one-parameter scaling is restored, and the scaling exponent calculated, in
agreement with the result of the finite size scaling analysis.Comment: 23 pages, 11 figures. RevTe
Statistics of Lyapunov exponent in one-dimensional layered systems
Localization of acoustic waves in a one dimensional water duct containing
many randomly distributed air filled blocks is studied. Both the Lyapunov
exponent and its variance are computed. Their statistical properties are also
explored extensively. The results reveal that in this system the single
parameter scaling is generally inadequate no matter whether the frequency we
consider is located in a pass band or in a band gap. This contradicts the
earlier observations in an optical case. We compare the results with two
optical cases and give a possible explanation of the origin of the different
behaviors.Comment: 6 pages revtex file, 6 eps figure
Genetic partitioning of interleukin-6 signalling in mice dissociates Stat3 from Smad3-mediated lung fibrosis
Idiopathic pulmonary fibrosis (IPF) is a fatal disease that is unresponsive to current therapies and characterized by excessive collagen deposition and subsequent fibrosis. While inflammatory cytokines, including interleukin (IL)-6, are elevated in IPF, the molecular mechanisms that underlie this disease are incompletely understood, although the development of fibrosis is believed to depend on canonical transforming growth factor (TGF)-β signalling. We examined bleomycin-induced inflammation and fibrosis in mice carrying a mutation in the shared IL-6 family receptor gp130. Using genetic complementation, we directly correlate the extent of IL-6-mediated, excessive Stat3 activity with inflammatory infiltrates in the lung and the severity of fibrosis in corresponding gp130757F mice. The extent of fibrosis was attenuated in B lymphocyte-deficient gp130757F;µMT−/− compound mutant mice, but fibrosis still occurred in their Smad3−/− counterparts consistent with the capacity of excessive Stat3 activity to induce collagen 1α1 gene transcription independently of canonical TGF-β/Smad3 signalling. These findings are of therapeutic relevance, since we confirmed abundant STAT3 activation in fibrotic lungs from IPF patients and showed that genetic reduction of Stat3 protected mice from bleomycin-induced lung fibrosis
- …
