2,305 research outputs found
Withdrawal of corticosteroids in inflammatory bowel disease patients after dependency periods ranging from 2 to 45 years: a proposed method
Site investigation for the effects of vegetation on ground stability
The procedure for geotechnical site investigation is well established but little attention is currently given to investigating the potential of vegetation to assist with ground stability. This paper describes how routine investigation procedures may be adapted to consider the effects of the vegetation. It is recommended that the major part of the vegetation investigation is carried out, at relatively low cost, during the preliminary (desk) study phase of the investigation when there is maximum flexibility to take account of findings in the proposed design and construction. The techniques available for investigation of the effects of vegetation are reviewed and references provided for further consideration. As for general geotechnical investigation work, it is important that a balance of effort is maintained in the vegetation investigation between (a) site characterisation (defining and identifying the existing and proposed vegetation to suit the site and ground conditions), (b) testing (in-situ and laboratory testing of the vegetation and root systems to provide design parameters) and (c) modelling (to analyse the vegetation effects)
Extended States in a One-dimensional Generalized Dimer Model
The transmission coefficient for a one dimensional system is given in terms
of Chebyshev polynomials using the tight-binding model. This result is applied
to a system composed of two impurities located between sites of a host
lattice. It is found that the system has extended states for several values of
the energy. Analytical expressions are given for the impurity site energy in
terms of the electron's energy. The number of resonant states grows like the
number of host sites between the impurities. This property makes the system
interesting since it is a simple task to design a configuration with resonant
energy very close to the Fermi level .Comment: 4 pages, 3 figure
The curvature perturbation at second order
We give an explicit relation, up to second-order terms, between scalar-field fluctuations defined on spatially-flat slices and the curvature perturbation on uniform-density slices. This expression is a necessary ingredient for calculating observable quantities at second-order and beyond in multiple-field inflation. We show that traditional cosmological perturbation theory and the `separate universe' approach yield equivalent expressions for superhorizon wavenumbers, and in particular that all nonlocal terms can be eliminated from the perturbation-theory expressions
Scaling Properties of 1D Anderson Model with Correlated Diagonal Disorder
Statistical and scaling properties of the Lyapunov exponent for a
tight-binding model with the diagonal disorder described by a dichotomic
process are considered near the band edge. The effect of correlations on
scaling properties is discussed. It is shown that correlations lead to an
additional parameter governing the validity of single parameter scaling.Comment: 5 pages, 3 figures, RevTe
Finite-temperature Fermi-edge singularity in tunneling studied using random telegraph signals
We show that random telegraph signals in metal-oxide-silicon transistors at
millikelvin temperatures provide a powerful means of investigating tunneling
between a two-dimensional electron gas and a single defect state. The tunneling
rate shows a peak when the defect level lines up with the Fermi energy, in
excellent agreement with theory of the Fermi-edge singularity at finite
temperature. This theory also indicates that defect levels are the origin of
the dissipative two-state systems observed previously in similar devices.Comment: 5 pages, REVTEX, 3 postscript figures included with epsfi
Kinetic energy driven superconductivity in doped cuprates
Within the t-J model, the mechanism of superconductivity in doped cuprates is
studied based on the partial charge-spin separation fermion-spin theory. It is
shown that dressed holons interact occurring directly through the kinetic
energy by exchanging dressed spinon excitations, leading to a net attractive
force between dressed holons, then the electron Cooper pairs originating from
the dressed holon pairing state are due to the charge-spin recombination, and
their condensation reveals the superconducting ground-state. The electron
superconducting transition temperature is determined by the dressed holon pair
transition temperature, and is proportional to the concentration of doped holes
in the underdoped regime. With the common form of the electron Cooper pair, we
also show that there is a coexistence of the electron Cooper pair and
antiferromagnetic short-range correlation, and hence the antiferromagnetic
short-range fluctuation can persist into the superconducting state. Our results
are qualitatively consistent with experiments.Comment: 6 pages, Revtex, two figures are included, corrected typo
Distribution of spectral weight in a system with disordered stripes
The ``band-structure'' of a disordered stripe array is computed and compared,
at a qualitative level, to angle resolved photoemission experiments on the
cuprate high temperature superconductors. The low-energy states are found to be
strongly localized transverse to the stripe direction, so the electron dynamics
is strictly one-dimensional (along the stripe). Despite this, aspects of the
two dimensional band-structure Fermi surface are still vividly apparent.Comment: 10 pages, 11 figure
Water wave propagation and scattering over topographical bottoms
Here I present a general formulation of water wave propagation and scattering
over topographical bottoms. A simple equation is found and is compared with
existing theories. As an application, the theory is extended to the case of
water waves in a column with many cylindrical steps
Defect and anisotropic gap induced quasi-one-dimensional modulation of local density of states in YBaCuO
Motivated by recent angle-resolved photoemission spectroscopy (ARPES)
measurement that superconducting YBaCuO (YBCO) exhibits a
-symmetry gap, we show possible quasi-one-dimensional
modulations of local density of states in YBCO. These aniostropic gap and
defect induced stripe structures are most conspicuous at higher biases and
arise due to the nesting effect associated with a Fermi liquid. Observation of
these spectra by scanning tunneling microscopy (STM) would unify the picture
among STM, ARPES, and inelastic neutron scattering for YBCO.Comment: 4 pages, 4 figure
- …
