23,890 research outputs found
Multiple Invaded Consolidating Materials
We study a multiple invasion model to simulate corrosion or intrusion
processes. Estimated values for the fractal dimension of the invaded region
reveal that the critical exponents vary as function of the generation number
, i.e., with the number of times the invasion process takes place. The
averaged mass of the invaded region decreases with a power-law as a
function of , , where the exponent . We
also find that the fractal dimension of the invaded cluster changes from
to . This result confirms that the
multiple invasion process follows a continuous transition from one universality
class (NTIP) to another (optimal path). In addition, we report extensive
numerical simulations that indicate that the mass distribution of avalanches
has a power-law behavior and we find that the exponent
governing the power-law changes continuously as a
function of the parameter . We propose a scaling law for the mass
distribution of avalanches for different number of generations .Comment: 8 pages and 16 figure
SAMplus: adaptive optics at optical wavelengths for SOAR
Adaptive Optics (AO) is an innovative technique that substantially improves
the optical performance of ground-based telescopes. The SOAR Adaptive Module
(SAM) is a laser-assisted AO instrument, designed to compensate ground-layer
atmospheric turbulence in near-IR and visible wavelengths over a large Field of
View. Here we detail our proposal to upgrade SAM, dubbed SAMplus, that is
focused on enhancing its performance in visible wavelengths and increasing the
instrument reliability. As an illustration, for a seeing of 0.62 arcsec at 500
nm and a typical turbulence profile, current SAM improves the PSF FWHM to 0.40
arcsec, and with the upgrade we expect to deliver images with a FWHM of
arcsec -- up to 0.23 arcsec FWHM PSF under good seeing
conditions. Such capabilities will be fully integrated with the latest SAM
instruments, putting SOAR in an unique position as observatory facility.Comment: To appear in Proc. SPIE 10703 (Ground-based and Airborne
Instrumentation for Astronomy VII; SPIEastro18
Local Physical Coodinates from Symplectic Projector Method
The basic arguments underlying the symplectic projector method are presented.
By this method, local free coordinates on the constrait surface can be obtained
for a broader class of constrained systems. Some interesting examples are
analyzed.Comment: 8 page
Efficient formalism for large scale ab initio molecular dynamics based on time-dependent density functional theory
A new "on the fly" method to perform Born-Oppenheimer ab initio molecular
dynamics (AIMD) is presented. Inspired by Ehrenfest dynamics in time-dependent
density functional theory, the electronic orbitals are evolved by a
Schroedinger-like equation, where the orbital time derivative is multiplied by
a parameter. This parameter controls the time scale of the fictitious
electronic motion and speeds up the calculations with respect to standard
Ehrenfest dynamics. In contrast to other methods, wave function orthogonality
needs not be imposed as it is automatically preserved, which is of paramount
relevance for large scale AIMD simulations.Comment: 5 pages, 3 color figures, revtex4 packag
Invasion Percolation Between two Sites
We investigate the process of invasion percolation between two sites
(injection and extraction sites) separated by a distance r in two-dimensional
lattices of size L. Our results for the non-trapping invasion percolation model
indicate that the statistics of the mass of invaded clusters is significantly
dependent on the local occupation probability (pressure) Pe at the extraction
site. For Pe=0, we show that the mass distribution of invaded clusters P(M)
follows a power-law P(M) ~ M^{-\alpha} for intermediate values of the mass M,
with an exponent \alpha=1.39. When the local pressure is set to Pe=Pc, where Pc
corresponds to the site percolation threshold of the lattice topology, the
distribution P(M) still displays a scaling region, but with an exponent
\alpha=1.02. This last behavior is consistent with previous results for the
cluster statistics in standard percolation. In spite of these discrepancies,
the results of our simulations indicate that the fractal dimension of the
invaded cluster does not depends significantly on the local pressure Pe and it
is consistent with the fractal dimension values reported for standard invasion
percolation. Finally, we perform extensive numerical simulations to determine
the effect of the lattice borders on the statistics of the invaded clusters and
also to characterize the self-organized critical behavior of the invasion
percolation process.Comment: 7 pages, 11 figures, submited for PR
How dense can one pack spheres of arbitrary size distribution?
We present the first systematic algorithm to estimate the maximum packing
density of spheres when the grain sizes are drawn from an arbitrary size
distribution. With an Apollonian filling rule, we implement our technique for
disks in 2d and spheres in 3d. As expected, the densest packing is achieved
with power-law size distributions. We also test the method on homogeneous and
on empirical real distributions, and we propose a scheme to obtain
experimentally accessible distributions of grain sizes with low porosity. Our
method should be helpful in the development of ultra-strong ceramics and high
performance concrete.Comment: 5 pages, 5 figure
- …
