21,587 research outputs found
Memory effects on the statistics of fragmentation
We investigate through extensive molecular dynamics simulations the
fragmentation process of two-dimensional Lennard-Jones systems. After
thermalization, the fragmentation is initiated by a sudden increment to the
radial component of the particles' velocities. We study the effect of
temperature of the thermalized system as well as the influence of the impact
energy of the ``explosion'' event on the statistics of mass fragments. Our
results indicate that the cumulative distribution of fragments follows the
scaling ansatz , where is
the mass, and are cutoff parameters, and is a scaling
exponent that is dependent on the temperature. More precisely, we show clear
evidence that there is a characteristic scaling exponent for each
macroscopic phase of the thermalized system, i.e., that the non-universal
behavior of the fragmentation process is dictated by the state of the system
before it breaks down.Comment: 5 pages, 8 figure
SAMplus: adaptive optics at optical wavelengths for SOAR
Adaptive Optics (AO) is an innovative technique that substantially improves
the optical performance of ground-based telescopes. The SOAR Adaptive Module
(SAM) is a laser-assisted AO instrument, designed to compensate ground-layer
atmospheric turbulence in near-IR and visible wavelengths over a large Field of
View. Here we detail our proposal to upgrade SAM, dubbed SAMplus, that is
focused on enhancing its performance in visible wavelengths and increasing the
instrument reliability. As an illustration, for a seeing of 0.62 arcsec at 500
nm and a typical turbulence profile, current SAM improves the PSF FWHM to 0.40
arcsec, and with the upgrade we expect to deliver images with a FWHM of
arcsec -- up to 0.23 arcsec FWHM PSF under good seeing
conditions. Such capabilities will be fully integrated with the latest SAM
instruments, putting SOAR in an unique position as observatory facility.Comment: To appear in Proc. SPIE 10703 (Ground-based and Airborne
Instrumentation for Astronomy VII; SPIEastro18
Teste de estabilidade de corante natural da casca de jabuticaba (Myrciaria sp.) em extrato hidrossolúvel de soja comercial.
Future dynamics in f(R) theories
The gravity theories provide an alternative way to explain the current
cosmic acceleration without invoking dark energy matter component. However, the
freedom in the choice of the functional forms of gives rise to the
problem of how to constrain and break the degeneracy among these gravity
theories on theoretical and/or observational grounds. In this paper to proceed
further with the investigation on the potentialities, difficulties and
limitations of gravity, we examine the question as to whether the future
dynamics can be used to break the degeneracy between gravity theories by
investigating the future dynamics of spatially homogeneous and isotropic dust
flat models in two gravity theories, namely the well known gravity and another by A. Aviles et al., whose motivation comes
from the cosmographic approach to gravity. To this end we perform a
detailed numerical study of the future dynamic of these flat model in these
theories taking into account the recent constraints on the cosmological
parameters made by the Planck team. We show that besides being powerful for
discriminating between gravity theories, the future dynamics technique
can also be used to determine the fate of the Universe in the framework of
these gravity theories. Moreover, there emerges from our numerical
analysis that if we do not invoke a dark energy component with
equation-of-state parameter one still has dust flat FLRW solution
with a big rip, if gravity deviates from general relativity via . We also show that FLRW dust solutions with do not
necessarily lead to singularity.Comment: 12 pages, 8 figures. V2: Generality and implications of the results
are emphasized, connection with the recent literature improved, typos
corrected, references adde
Trajectories in a space with a spherically symmetric dislocation
We consider a new type of defect in the scope of linear elasticity theory,
using geometrical methods. This defect is produced by a spherically symmetric
dislocation, or ball dislocation. We derive the induced metric as well as the
affine connections and curvature tensors. Since the induced metric is
discontinuous, one can expect ambiguity coming from these quantities, due to
products between delta functions or its derivatives, plaguing a description of
ball dislocations based on the Geometric Theory of Defects. However, exactly as
in the previous case of cylindric defect, one can obtain some well-defined
physical predictions of the induced geometry. In particular, we explore some
properties of test particle trajectories around the defect and show that these
trajectories are curved but can not be circular orbits.Comment: 11 pages, 3 figure
Total Molecular Gas Masses of Planck - Herschel Selected Strongly Lensed Hyper Luminous Infrared Galaxies
We report the detection of CO(1 - 0) line emission from seven Planck and
Herschel selected hyper luminous (LIR(8-1000um) > 10^13Lsun) infrared galaxies
with the Green Bank Telescope (GBT). CO(1 - 0) measurements are a vital tool to
trace the bulk molecular gas mass across all redshifts. Our results place tight
constraints on the total gas content of these most apparently luminous high-z
star-forming galaxies (apparent IR luminosities of LIR > 10^(13-14) Lsun),
while we confirm their predetermined redshifts measured using the Large
Millimeter Telescope, LMT (zCO = 1.33 - 3.26). The CO(1 - 0) lines show similar
profiles as compared to Jup = 2 -4 transitions previously observed with the
LMT. We report enhanced infrared to CO line luminosity ratios of
= 110 (pm 22) Lsun(K km s^-1 pc^-2)^-1 compared to normal
star-forming galaxies, yet similar to those of well-studied IR-luminous
galaxies at high-z. We find average brightness temperature ratios of =
0.93 (2 sources), = 0.34 (5 sources), and = 0.18 (1 source). The
r31 and r41 values are roughly half the average values for SMGs. We estimate
the total gas mass content as uMH2 = (0.9 - 27.2) x 10^11(alphaCO/0.8)Msun,
where u is the magnification factor and alphaCO is the CO line luminosity to
molecular hydrogen gas mass conversion factor. The rapid gas depletion times
are, on average, tau = 80 Myr, which reveal vigorous starburst activity, and
contrast the Gyr depletion timescales observed in local, normal star-forming
galaxies.Comment: published in MNRAS, 9pages, 5fig
The Teleparallel Lagrangian and Hamilton-Jacobi Formalism
We analyze the Teleparallel Equivalent of General Relativity (TEGR) from the
point of view of Hamilton-Jacobi approach for singular systemsComment: 11 pages, no figures, to appear in GR
Estimativa e Mapeamento de carbono em fragmentos florestais da APA Fernão Dias (MG) com uso de dados orbitais do sensor TM-Landsat.
- …
