503 research outputs found
A Landino White Clover Breeding Programme in Northern Italy
Ladino wh ite clover (Trifolium repens L.) has traditionally been grown in pure stand rotational meadows throughout the Po Valley. Recent changes in the farming systems have drastically reduced the presence of this clover. Its rehabilitation depends on the cultivation of new, more productive cultivars in association with a grass. Thirtytwo ecotypes including both farm land races and natural populations were collected and evaluated for dry mailer yield (OM) and seed yield, Significant variability was found among these materials for both traits. Compared with natural populations, land races yielded far more seed and as much DM . Some aspects of clover- grass competition were also studied. Twelve clover genotypes were separately grown in dense swards as pure stand and in association with either a perennial or an ltalian ryegrass. Significant interaction between genotype and growing condition was observed for clover DM yield for both pure stand v. association and between associated grass
A Multivariate Assessment of Variation Within and Among Ladino White Clover Ecotypes
Some 285 Ladino white clover genotypes selected from four ecotypes were multiplied clonally and evaluated in a replicated pot experiment over one year. Multivariate patterns of variation were depicted by principal component analysis performed on the correlation matrix of five morphophysiological traits, namely petiole length, central leaflet size, head production, number of florets per head and stolon density. Selection was based on high broad sense heritability values of all of these traits. The level of intra-population variation was so high relative to inter-population variation that almost all plant types possibe could be found within each ecotype, although at a variable frequency. Genetic distances between populations, computed as unsquared Euclidean distances between mean values of the ecotypes in the space of the significant PC axes, were consistent (r = 0.87, P \u3c 0.03) with those issued from a previous evaluation in dense, sown plots. The implications of the present findings on collection, preservation and selection activities is discussed
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
Comparative histological analysis of dentine-derived tooth grafts in maxillary vs mandibular socket preservation: a retrospective study of 178 cases
(1) Background: In recent years, there has been a growing interest in tooth-derived materials as valuable alternatives to synthetic biomaterials for preventing alveolar ridge dimensional changes. This study aimed to evaluate the histological and clinical differences between alveolar ridge preservation procedures in the maxilla and mandible using demineralized dentin treated with Tooth Transformer®. (2) Methods: A total of 178 patients in good general health were enrolled, with 187 post-extractive sockets lacking buccal and/or palatal bone walls. Alveolar socket preservation procedures and histological evaluations were performed. The sites were divided into two groups: Group A (99 mandibular samples) and Group B (108 maxillary samples). After 5 months (±1 month), single bone biopsies were performed for histologic and histomorphometric analysis. (3) Results: Clinical outcomes demonstrated a good healing of hard and soft tissues with an effective maintenance of bone architecture in both groups. Histomorphometric analysis revealed a total bone volume of 50.33% (±14.86) in Group A compared to 43.53% (±12.73) in Group B. The vital new bone volume was 40.59% (±19.90) in Group A versus 29.70% (±17.68) in Group B, with residual graft dentin material volume at 7.95% (±9.85) in Group A compared to 6.75% (±9.62) in Group B. (4) Conclusions: These results indicate that tooth-derived material supports hard tissue reconstruction by following the structure of the surrounding bone tissue. A 6.8% difference observed between the maxilla and mandible reflects the inherent disparities in natural bone structures in these regions. This suggests that the bone regeneration process after tooth extraction adheres to an anatomical functional pattern that reflects the specific bone characteristics of each area, thus contributing to the preservation of the morphology and functionality of the surrounding bone tissue
Diabetic Cardiomyopathy: Role of Cell Death, Exosomes, Fibrosis and Epicardial Adipose Tissue
Diabetic cardiomyopathy (DCM) represents one of the typical complications associated with diabetes. It has been described as anomalies in heart function and structure, with consequent high morbidity and mortality. DCM development can be described by two stages; the first is characterized by left ventricular hypertrophy and diastolic dysfunction, and the second by heart failure (HF) with systolic dysfunction. The proposed mechanisms involve cardiac inflammation, advanced glycation end products (AGEs) and angiotensin II. Furthermore, different studies have focused their attention on cardiomyocyte death through the different mechanisms of programmed cell death, such as apoptosis, autophagy, necrosis, pyroptosis and ferroptosis. Exosome release, adipose epicardial tissue and aquaporins affect DCM development. This review will focus on the description of the mechanisms involved in DCM progression and development
Macro- And micro-nutrient composition and antioxidant activity of Chickpea and Pea Accessions
Epidemiological studies reported an inverse association between the consumption of legumes and the incidence of age-related diseases. This trend could be attributed to the presence of antioxidant compounds, especially phenolic and flavonoid compounds. In this paper, five pea (Pisum sativum L.) and twelve chickpea (Cicer arietinum L.) accessions, having different characteristics and geographical origin, were characterised in terms of antioxidant activity, as well as macro- and micro-nutrient composition. The antioxidant activity has been evaluated using both DPPH (2,2-diphenyl-1-picrylhydra-zyl) and ABTS (2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging capacity assays. Chickpea and pea accessions showed a different behaviour in the presence of these different radicals. Chickpea accessions were characterised by significantly higher DPPH• scavenging activity, while peas showed a significantly higher value of antioxidant activity evaluated using the ABTS assay. Pea accessions had the highest content of total phenolic compounds, Zn, and Cu. A positive correlation was found between some minerals, such as Zn, Cu and P, and the ABTS•+ scavenging activity. Black and brown chickpea accessions showed significantly higher contents of anthocyanins, Mn, Mg, and Ca, which were positively correlated with the antioxidant activity assessed with the DPPH assay. Despite the dataset investigated in our study included a limited number of accessions, it was possible to highlight the influence of the chemical composition on the antioxidant activity due to the high phenotypic diversity found between the accessions, emphasising the importance of selecting the antioxidant activity assay according to the matrix to be evaluated
Molecular mechanisms of cell death:recommendations of the Nomenclature Committee on Cell Death 2018
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.</p
GLS2 is transcriptionally regulated by p73 and contributes to neuronal differentiation
The amino acid Glutamine is converted into Glutamate by a deamidation reaction catalyzed by the enzyme Glutaminase (GLS). Two isoforms of this enzyme have been described, and the GLS2 isoform is regulated by the tumor suppressor gene p53. Here, we show that the p53 family member TAp73 also drives the expression of GLS2. Specifically, we demonstrate that TAp73 regulates GLS2 during retinoic acid-induced terminal neuronal differentiation of neuroblastoma cells, and overexpression or inhibition of GLS2 modulates neuronal differentiation and intracellular levels of ATP . Moreover, inhibition of GLS activity, by removing Glutamine from the growth medium, impairs in vitro differentiation of cortical neurons. Finally, expression of GLS2 increases during mouse cerebellar development. Although, p73 is dispensable for the in vivo expression of GLS2, TAp73 loss affects GABA and Glutamate levels in cortical neurons. Together, these findings suggest a role for GLS2 acting, at least in part, downstream of p73 in neuronal differentiation and highlight a possible role of p73 in regulating neurotransmitter synthesis
Free-amino acid metabolic profiling of visceral adipose tissue from obese subjects
Interest in adipose tissue pathophysiology and biochemistry have expanded considerably in the past two decades due to the ever increasing and alarming rates of global obesity and its critical outcome defined as metabolic syndrome (MS). This obesity-linked systemic dysfunction generates high risk factors of developing perilous diseases like type 2 diabetes, cardiovascular disease or cancer. Amino acids could play a crucial role in the pathophysiology of the MS onset. Focus of this study was to fully characterize amino acids metabolome modulations in visceral adipose tissues (VAT) from three adult cohorts: (i) obese patients (BMI 43-48) with metabolic syndrome (PO), (ii) obese subjects metabolically well (O), and (iii) non obese individuals (H). 128 metabolites identified as 20 protein amino acids, 85 related compounds and 13 dipeptides were measured by ultrahigh performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) and gas chromatography-/mass spectrometry GC/MS, in visceral fat samples from a total of 53 patients. Our analysis indicates a probable enhanced BCAA (leucine, isoleucine, valine) degradation in both VAT from O and PO subjects, while levels of their oxidation products are increased. Also PO and O VAT samples were characterized by: elevated levels of kynurenine, a catabolic product of tryptophan and precursor of diabetogenic substances, a significant increase of cysteine sulfinic acid levels, a decrease of 1-methylhistidine, and an up regulating trend of 3-methylhistidine levels. We hope this profiling can aid in novel clinical strategies development against the progression from obesity to metabolic syndrome
- …
