296 research outputs found
Rubber Impact on 3D Textile Composites
A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools
The feasibility of an exercise intervention in males at risk of oesophageal adenocarcinoma: a randomized controlled trial
Objective: To investigate the feasibility and safety of a 24-week exercise intervention, compared to control, in males with Barrett's oesophagus, and to estimate the effect of the intervention, compared to control, on risk factors associated with oesophageal adenocarcinoma development. Methods: A randomized controlled trial of an exercise intervention (60 minutes moderate-intensity aerobic and resistance exercise five days/week over 24 weeks; one supervised and four unsupervised sessions) versus attention control (45 minutes stretching five days/week over 24 weeks; one supervised and four unsupervised sessions) in inactive, overweight/obese (25.0-34.9 kg/m2) males with Barrett's oesophagus, aged 18-70 years. Primary outcomes were obesity-associated hormones relevant to oesophageal adenocarcinoma risk (circulating concentrations of leptin, adiponectin, interleukin-6, tumour necrosis factor-alpha, C-reactive protein, and insulin resistance HOMA). Secondary outcomes included waist circumference, body composition, fitness, strength and gastro-oesophageal reflux symptoms. Outcomes were measured at baseline and 24-weeks. Intervention effects were analysed using generalised linear models, adjusting for baseline value. Results: Recruitment was difficult in this population with a total of 33 participants recruited (target sample size: n = 80); 97% retention at 24-weeks. Adherence to the exercise protocol was moderate. No serious adverse events were reported. A statistically significant intervention effect (exercise minus control) was observed for waist circumference (-4.5 95%CI -7.5, -1.4 cm; p < 0.01). Effects on primary outcomes were not statistically significant. Conclusion: This small, exploratory trial provides important information to inform future trial development including recruitment rates and estimates of effect sizes on outcomes related to oesophageal adenocarcinoma risk. Future trials should investigate a combined dietary and exercise intervention to achieve greater weight loss in this population and relax inclusion criteria to maximize recruitment. Trial Registration: Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12609000401257. © 2015 Winzer et al
Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas
Summary
Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes (TP53, ATRX, RB1) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types
Full-length human placental sFlt-1-e15a isoform induces distinct maternal phenotypes of preeclampsia in mice
<div><p>Objective</p><p>Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1) not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1) develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a) in preeclampsia; 2) determine blood pressures in non-stressed conditions; and 3) develop a survival surgery that enables the collection of fetuses and placentas and postpartum (PP) monitoring.</p><p>Methods</p><p>Pregnancy status of CD-1 mice was evaluated with high-frequency ultrasound on gestational days (GD) 6 and 7. Telemetry catheters were implanted in the carotid artery on GD7, and their positions were verified by ultrasound on GD13. Mice were injected through tail-vein with adenoviruses expressing hsFlt-1-e15a (n = 11) or green fluorescent protein (GFP; n = 9) on GD8/GD11. Placentas and pups were delivered by cesarean section on GD18 allowing PP monitoring. Urine samples were collected with cystocentesis on GD6/GD7, GD13, GD18, and PPD8, and albumin/creatinine ratios were determined. GFP and hsFlt-1-e15a expression profiles were determined by qRT-PCR. Aortic ring assays were performed to assess the effect of hsFlt-1-e15a on endothelia.</p><p>Results</p><p>Ultrasound predicted pregnancy on GD7 in 97% of cases. Cesarean section survival rate was 100%. Mean arterial blood pressure was higher in hsFlt-1-e15a-treated than in GFP-treated mice (∆MAP = 13.2 mmHg, p = 0.00107; GD18). Focal glomerular changes were found in hsFlt-1-e15a -treated mice, which had higher urine albumin/creatinine ratios than controls (109.3±51.7μg/mg vs. 19.3±5.6μg/mg, p = 4.4x10<sup>-2</sup>; GD18). Aortic ring assays showed a 46% lesser microvessel outgrowth in hsFlt-1-e15a-treated than in GFP-treated mice (p = 1.2x10<sup>-2</sup>). Placental and fetal weights did not differ between the groups. One mouse with liver disease developed early-onset preeclampsia-like symptoms with intrauterine growth restriction (IUGR).</p><p>Conclusions</p><p>A mouse model of late-onset preeclampsia was developed with the overexpression of hsFlt-1-e15a, verifying the <i>in vivo</i> pathologic effects of this primate-specific, predominant placental sFlt-1 isoform. HsFlt-1-e15a induced early-onset preeclampsia-like symptoms associated with IUGR in a mouse with a liver disease. Our findings support that hsFlt-1-e15a is central to the terminal pathway of preeclampsia, and it can induce the full spectrum of symptoms in this obstetrical syndrome.</p></div
Modulation of the Arginase Pathway in the Context of Microbial Pathogenesis: A Metabolic Enzyme Moonlighting as an Immune Modulator
Arginine is a crucial amino acid that serves to modulate the cellular immune response during infection. Arginine is also a common substrate for both inducible nitric oxide synthase (iNOS) and arginase. The generation of nitric oxide from arginine is responsible for efficient immune response and cytotoxicity of host cells to kill the invading pathogens. On the other hand, the conversion of arginine to ornithine and urea via the arginase pathway can support the growth of bacterial and parasitic pathogens. The competition between iNOS and arginase for arginine can thus contribute to the outcome of several parasitic and bacterial infections. There are two isoforms of vertebrate arginase, both of which catalyze the conversion of arginine to ornithine and urea, but they differ with regard to tissue distribution and subcellular localization. In the case of infection with Mycobacterium, Leishmania, Trypanosoma, Helicobacter, Schistosoma, and Salmonella spp., arginase isoforms have been shown to modulate the pathology of infection by various means. Despite the existence of a considerable body of evidence about mammalian arginine metabolism and its role in immunology, the critical choice to divert the host arginine pool by pathogenic organisms as a survival strategy is still a mystery in infection biology
Baseline hospital performance and the impact of medical emergency teams: Modelling vs. conventional subgroup analysis
<p>Abstract</p> <p>Background</p> <p>To compare two approaches to the statistical analysis of the relationship between the baseline incidence of adverse events and the effect of medical emergency teams (METs).</p> <p>Methods</p> <p>Using data from a cluster randomized controlled trial (the MERIT study), we analysed the relationship between the baseline incidence of adverse events and its change from baseline to the MET activation phase using quadratic modelling techniques. We compared the findings with those obtained with conventional subgroup analysis.</p> <p>Results</p> <p>Using linear and quadratic modelling techniques, we found that each unit increase in the baseline incidence of adverse events in MET hospitals was associated with a 0.59 unit subsequent reduction in adverse events (95%CI: 0.33 to 0.86) after MET implementation and activation. This applied to cardiac arrests (0.74; 95%CI: 0.52 to 0.95), unplanned ICU admissions (0.56; 95%CI: 0.26 to 0.85) and unexpected deaths (0.68; 95%CI: 0.45 to 0.90). Control hospitals showed a similar reduction only for cardiac arrests (0.95; 95%CI: 0.56 to 1.32). Comparison using conventional subgroup analysis, on the other hand, detected no significant difference between MET and control hospitals.</p> <p>Conclusions</p> <p>Our study showed that, in the MERIT study, when there was dependence of treatment effect on baseline performance, an approach based on regression modelling helped illustrate the nature and magnitude of such dependence while sub-group analysis did not. The ability to assess the nature and magnitude of such dependence may have policy implications. Regression technique may thus prove useful in analysing data when there is a conditional treatment effect.</p
Serum folate, homocysteine and colorectal cancer risk in women: a nested case–control study
Accumulating evidence suggests that folate, which is plentiful in vegetables and fruits, may be protective against colorectal cancer. The authors have studied the relationship of baseline levels of serum folate and homocysteine to the subsequent risk of colorectal cancer in a nested case–control study including 105 cases and 523 matched controls from the New York University Women's Health Study cohort. In univariate analyses, the cases had lower serum folate and higher serum homocysteine levels than controls. The difference was more significant for folate (P < 0.001) than for homocysteine (P = 0.04). After ad'justing for potential confounders, the risk of colorectal cancer in the subjects in the highest quartile of serum folate was half that of those in the lowest quartile (odds ratio, OR = 0.52, 95% confidence interval, CI = 0.27–0.97, P-value for trend = 0.04). The OR for the highest quartile of homocysteine, relative to the lowest quartile, was 1.72 (95% CI = 0.83–3.65, P-value for trend = 0.09). In addition, the risk of colorectal cancer was almost twice as high in subjects with below-median serum folate and above-median total alcohol intake compared with those with above-median serum folate and below-median alcohol consumption (OR = 1.99, 95% CI = 0.92–4.29). The potentially protective effects of folate need to be confirmed in clinical trials. © 1999 Cancer Research Campaig
B-Cyclin/CDKs Regulate Mitotic Spindle Assembly by Phosphorylating Kinesins-5 in Budding Yeast
Although it has been known for many years that B-cyclin/CDK complexes regulate the assembly of the mitotic spindle and entry into mitosis, the full complement of relevant CDK targets has not been identified. It has previously been shown in a variety of model systems that B-type cyclin/CDK complexes, kinesin-5 motors, and the SCFCdc4 ubiquitin ligase are required for the separation of spindle poles and assembly of a bipolar spindle. It has been suggested that, in budding yeast, B-type cyclin/CDK (Clb/Cdc28) complexes promote spindle pole separation by inhibiting the degradation of the kinesins-5 Kip1 and Cin8 by the anaphase-promoting complex (APCCdh1). We have determined, however, that the Kip1 and Cin8 proteins are present at wild-type levels in the absence of Clb/Cdc28 kinase activity. Here, we show that Kip1 and Cin8 are in vitro targets of Clb2/Cdc28 and that the mutation of conserved CDK phosphorylation sites on Kip1 inhibits spindle pole separation without affecting the protein's in vivo localization or abundance. Mass spectrometry analysis confirms that two CDK sites in the tail domain of Kip1 are phosphorylated in vivo. In addition, we have determined that Sic1, a Clb/Cdc28-specific inhibitor, is the SCFCdc4 target that inhibits spindle pole separation in cells lacking functional Cdc4. Based on these findings, we propose that Clb/Cdc28 drives spindle pole separation by direct phosphorylation of kinesin-5 motors
BRAF Activation Initiates but Does Not Maintain Invasive Prostate Adenocarcinoma
Prostate cancer is the second leading cause of cancer-related deaths in men. Activation of MAP kinase signaling pathway has been implicated in advanced and androgen-independent prostate cancers, although formal genetic proof has been lacking. In the course of modeling malignant melanoma in a tyrosinase promoter transgenic system, we developed a genetically-engineered mouse (GEM) model of invasive prostate cancers, whereby an activating mutation of BRAFV600E–a mutation found in ∼10% of human prostate tumors–was targeted to the epithelial compartment of the prostate gland on the background of Ink4a/Arf deficiency. These GEM mice developed prostate gland hyperplasia with progression to rapidly growing invasive adenocarcinoma without evidence of AKT activation, providing genetic proof that activation of MAP kinase signaling is sufficient to drive prostate tumorigenesis. Importantly, genetic extinction of BRAFV600E in established prostate tumors did not lead to tumor regression, indicating that while sufficient to initiate development of invasive prostate adenocarcinoma, BRAFV600E is not required for its maintenance
- …
