1,116 research outputs found
A generalized stoichiometric model of C3, C2, C2+C4, and C4 photosynthetic metabolism.
The goal of suppressing photorespiration in crops to maximize assimilation and yield is stimulating considerable interest among researchers looking to bioengineer carbon-concentrating mechanisms into C3 plants. However, detailed quantification of the biochemical activities in the bundle sheath is lacking. This work presents a general stoichiometric model for C3, C2, C2+C4, and C4 assimilation (SMA) in which energetics, metabolite traffic, and the different decarboxylating enzymes (NAD-dependent malic enzyme, NADP-dependent malic enzyme, or phosphoenolpyruvate carboxykinase) are explicitly included. The SMA can be used to refine experimental data analysis or formulate hypothetical scenarios, and is coded in a freely available Microsoft Excel workbook. The theoretical underpinnings and general model behaviour are analysed with a range of simulations, including (i) an analysis of C3, C2, C2+C4, and C4 in operational conditions; (ii) manipulating photorespiration in a C3 plant; (iii) progressively upregulating a C2 shuttle in C3 photosynthesis; (iv) progressively upregulating a C4 cycle in C2 photosynthesis; and (v) manipulating processes that are hypothesized to respond to transient environmental inputs. Results quantify the functional trade-offs, such as the electron transport needed to meet ATP/NADPH demand, as well as metabolite traffic, inherent to different subtypes. The SMA refines our understanding of the stoichiometry of photosynthesis, which is of paramount importance for basic and applied research
Partial Covering Arrays: Algorithms and Asymptotics
A covering array is an array with entries
in , for which every subarray contains each
-tuple of among its rows. Covering arrays find
application in interaction testing, including software and hardware testing,
advanced materials development, and biological systems. A central question is
to determine or bound , the minimum number of rows of
a . The well known bound
is not too far from being
asymptotically optimal. Sensible relaxations of the covering requirement arise
when (1) the set need only be contained among the rows
of at least of the subarrays and (2) the
rows of every subarray need only contain a (large) subset of . In this paper, using probabilistic methods, significant
improvements on the covering array upper bound are established for both
relaxations, and for the conjunction of the two. In each case, a randomized
algorithm constructs such arrays in expected polynomial time
Noncommutative Vortices and Instantons from Generalized Bose Operators
Generalized Bose operators correspond to reducible representations of the
harmonic oscillator algebra. We demonstrate their relevance in the construction
of topologically non-trivial solutions in noncommutative gauge theories,
focusing our attention to flux tubes, vortices, and instantons. Our method
provides a simple new relation between the topological charge and the number of
times the basic irreducible representation occurs in the reducible
representation underlying the generalized Bose operator. When used in
conjunction with the noncommutative ADHM construction, we find that these new
instantons are in general not unitarily equivalent to the ones currently known
in literature.Comment: 25 page
Spin-orbit density wave induced hidden topological order in URu2Si2
The conventional order parameters in quantum matters are often characterized
by 'spontaneous' broken symmetries. However, sometimes the broken symmetries
may blend with the invariant symmetries to lead to mysterious emergent phases.
The heavy fermion metal URu2Si2 is one such example, where the order parameter
responsible for a second-order phase transition at Th = 17.5 K has remained a
long-standing mystery. Here we propose via ab-initio calculation and effective
model that a novel spin-orbit density wave in the f-states is responsible for
the hidden-order phase in URu2Si2. The staggered spin-orbit order 'spontaneous'
breaks rotational, and translational symmetries while time-reversal symmetry
remains intact. Thus it is immune to pressure, but can be destroyed by magnetic
field even at T = 0 K, that means at a quantum critical point. We compute
topological index of the order parameter to show that the hidden order is
topologically invariant. Finally, some verifiable predictions are presented.Comment: (v2) Substantially modified from v1, more calculation and comparison
with experiments are include
Measuring maternal mortality : an overview of opportunities and options for developing countries
Background:There is currently an unprecedented expressed need and demand for estimates of maternal mortality in developing countries. This has been stimulated in part by the creation of a Millennium Development Goal that will be judged partly on the basis of reductions in maternal mortality by 2015. Methods: Since the launch of the Safe Motherhood Initiative in 1987, new opportunities for data capture have arisen and new methods have been developed, tested and used. This paper provides a pragmatic overview of these methods and the optimal measurement strategies for different developing country contexts. Results: There are significant recent advances in the measurement of maternal mortality, yet also room for further improvement, particularly in assessing the magnitude and direction of biases and their implications for different data uses. Some of the innovations in measurement provide efficient mechanisms for gathering the requisite primary data at a reasonably low cost. No method, however, has zero costs. Investment is needed in measurement strategies for maternal mortality suited to the needs and resources of a country, and which also strengthen the technical capacity to generate and use credible estimates. Conclusion: Ownership of information is necessary for it to be acted upon: what you count is what you do. Difficulties with measurement must not be allowed to discourage efforts to reduce maternal mortality. Countries must be encouraged and enabled to count maternal deaths and act.WJG is funded partially by the University of Aberdeen. OMRC is partially funded by the London School of Hygiene and Tropical Medicine. CS and SA are partially funded by Johns Hopkins University. CAZ is funded by the Health Metrics Network at the World Health Organization. WJG, OMRC, CS and SA are also partially supported through an international research program, Immpact, funded by the Bill & Melinda Gates Foundation, the Department for International Development, the European Commission and USAID
Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework
Ordered two-dimensional covalent organic frameworks (COFs) have generally been synthesized using reversible reactions. It has been difficult to synthesize a similar degree of ordered COFs using irreversible reactions. Developing COFs with a fused aromatic ring system via an irreversible reaction is highly desirable but has remained a significant challenge. Here we demonstrate a COF that can be synthesized from organic building blocks via irreversible condensation (aromatization). The as-synthesized robust fused aromatic COF (F-COF) exhibits high crystallinity. Its lattice structure is characterized by scanning tunneling microscopy and X-ray diffraction pattern. Because of its fused aromatic ring system, the F-COF structure possesses high physiochemical stability, due to the absence of hydrolysable weak covalent bonds
Hidden Orbital Order in
When matter is cooled from high temperatures, collective instabilities
develop amongst its constituent particles that lead to new kinds of order. An
anomaly in the specific heat is a classic signature of this phenomenon. Usually
the associated order is easily identified, but sometimes its nature remains
elusive. The heavy fermion metal is one such example, where the
order responsible for the sharp specific heat anomaly at has
remained unidentified despite more than seventeen years of effort. In
, the coexistence of large electron-electron repulsion and
antiferromagnetic fluctuations in leads to an almost incompressible
heavy electron fluid, where anisotropically paired quasiparticle states are
energetically favored. In this paper we use these insights to develop a
detailed proposal for the hidden order in . We show that
incommensurate orbital antiferromagnetism, associated with circulating currents
between the uranium ions, can account for the local fields and entropy loss
observed at the transition; furthermore we make detailed predictions for
neutron scattering measurements
New evidence on Allyn Young's style and influence as a teacher
This paper publishes the hitherto unpublished correspondence between Allyn Abbott Young's biographer Charles Blitch and 17 of Young's former students or associates. Together with related biographical and archival material, the paper shows the way in which this adds to our knowledge of Young's considerable influence as a teacher upon some of the twentieth century's greatest economists. The correspondents are as follows: James W Angell, Colin Clark, Arthur H Cole, Lauchlin Currie, Melvin G de Chazeau, Eleanor Lansing Dulles, Howard S Ellis, Frank W Fetter, Earl J Hamilton, Seymour S Harris, Richard S Howey, Nicholas Kaldor, Melvin M Knight, Bertil Ohlin, Geoffrey Shepherd, Overton H Taylor, and Gilbert Walker
Corporate reporting and disclosures in the emerging capital market of Kuwait:the perceptions of users and preparers
The objective of this paper is to investigate the perceptions of users and preparers regarding financial disclosure practices in annual reports of Kuwaiti listed firms. To measure participants' views, a questionnaire survey was distributed in Kuwait between October and December 2012, to preparers (financial managers) and users (financial analysts) within Kuwaiti listed companies. The study compares between the perceptions of financial managers and financial analysts regarding disclosing information in corporate annual reports as well as the main obstacles facing the disclosure process and what the problems restricting the use of companies' annual reports. The study also seeks to investigate whether there is a perceived need for improving the usefulness of Kuwaiti companies' annual reports for decision-making. The results, based on 137 responses, indicate that accounting practices in Kuwaiti firms are firmly rooted in a decision-usefulness tradition with management and the board of directors viewed as the key audience for reporting information. Indeed, the annual reports of Kuwaiti listed companies are perceived as the most important sources of information. On the whole both users and preparers shared similar concerns regarding the volume of information contained within annual reports; however, their views differed in terms of identifying potential solutions. The results of the study are likely to have implications for decision makers, the academic community and accounting standard setters. 2018 Macmillan Publishers Ltd., part of Springer Nature
- …
