46 research outputs found

    ATP release via anion channels

    Get PDF
    ATP serves not only as an energy source for all cell types but as an ‘extracellular messenger-for autocrine and paracrine signalling. It is released from the cell via several different purinergic signal efflux pathways. ATP and its Mg2+ and/or H+ salts exist in anionic forms at physiological pH and may exit cells via some anion channel if the pore physically permits this. In this review we survey experimental data providing evidence for and against the release of ATP through anion channels. CFTR has long been considered a probable pathway for ATP release in airway epithelium and other types of cells expressing this protein, although non-CFTR ATP currents have also been observed. Volume-sensitive outwardly rectifying (VSOR) chloride channels are found in virtually all cell types and can physically accommodate or even permeate ATP4- in certain experimental conditions. However, pharmacological studies are controversial and argue against the actual involvement of the VSOR channel in significant release of ATP. A large-conductance anion channel whose open probability exhibits a bell-shaped voltage dependence is also ubiquitously expressed and represents a putative pathway for ATP release. This channel, called a maxi-anion channel, has a wide nanoscopic pore suitable for nucleotide transport and possesses an ATP-binding site in the middle of the pore lumen to facilitate the passage of the nucleotide. The maxi-anion channel conducts ATP and displays a pharmacological profile similar to that of ATP release in response to osmotic, ischemic, hypoxic and salt stresses. The relation of some other channels and transporters to the regulated release of ATP is also discussed

    A combination of ascorbic acid and α-tocopherol to test the effectiveness and safety in the fragile X syndrome: study protocol for a phase II, randomized, placebo-controlled trial

    Get PDF
    BACKGROUND: Fragile X syndrome (FXS) is an inherited neurodevelopmental condition characterised by behavioural, learning disabilities, phisical and neurological symptoms. In addition, an important degree of comorbidity with autism is also present. Considered a rare disorder affecting both genders, it first becomes apparent during childhood with displays of language delay and behavioural symptoms. Main aim: To show whether the combination of 10 mg/kg/day of ascorbic acid (vitamin C) and 10 mg/kg/day of α-tocopherol (vitamin E) reduces FXS symptoms among male patients ages 6 to 18 years compared to placebo treatment, as measured on the standardized rating scales at baseline, and after 12 and 24 weeks of treatment. Secondary aims: To assess the safety of the treatment. To describe behavioural and cognitive changes revealed by the Developmental Behaviour Checklist Short Form (DBC-P24) and the Wechsler Intelligence Scale for Children–Revised. To describe metabolic changes revealed by blood analysis. To measure treatment impact at home and in an academic environment. METHODS/DESIGN: A phase II randomized, double-blind pilot clinical trial. Scope: male children and adolescents diagnosed with FXS, in accordance with a standardized molecular biology test, who met all the inclusion criteria and none of the exclusion criteria. Instrumentation: clinical data, blood analysis, Wechsler Intelligence Scale for Children–Revised, Conners parent and teacher rating scale scores and the DBC-P24 results will be obtained at the baseline (t0). Follow up examinations will take place at 12 weeks (t1) and 24 weeks (t2) of treatment. DISCUSSION: A limited number of clinical trials have been carried out on children with FXS, but more are necessary as current treatment possibilities are insufficient and often provoke side effects. In the present study, we sought to overcome possible methodological problems by conducting a phase II pilot study in order to calculate the relevant statistical parameters and determine the safety of the proposed treatment. The results will provide evidence to improve hyperactivity control and reduce behavioural and learning problems using ascorbic acid (vitamin C) and α-tocopherol (vitamin E). The study protocol was approved by the Regional Government Committee for Clinical Trials in Andalusia and the Spanish agency for drugs and health products. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01329770 (29 March 2011

    The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance

    Get PDF
    Ectonucleotidases are ectoenzymes that hydrolyze extracellular nucleotides to the respective nucleosides. Within the past decade, ectonucleotidases belonging to several enzyme families have been discovered, cloned and characterized. In this article, we specifically address the cell surface-located members of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) family (NTPDase1,2,3, and 8). The molecular identification of individual NTPDase subtypes, genetic engineering, mutational analyses, and the generation of subtype-specific antibodies have resulted in considerable insights into enzyme structure and function. These advances also allow definition of physiological and patho-physiological implications of NTPDases in a considerable variety of tissues. Biological actions of NTPDases are a consequence (at least in part) of the regulated phosphohydrolytic activity on extracellular nucleotides and consequent effects on P2-receptor signaling. It further appears that the spatial and temporal expression of NTPDases by various cell types within the vasculature, the nervous tissues and other tissues impacts on several patho-physiological processes. Examples include acute effects on cellular metabolism, adhesion, activation and migration with other protracted impacts upon developmental responses, inclusive of cellular proliferation, differentiation and apoptosis, as seen with atherosclerosis, degenerative neurological diseases and immune rejection of transplanted organs and cells. Future clinical applications are expected to involve the development of new therapeutic strategies for transplantation and various inflammatory cardiovascular, gastrointestinal and neurological diseases

    Evidence for sustained ATP release from liver cells that is not mediated by vesicular exocytosis

    No full text
    Extracellular ATP regulates many important cellular functions in the liver by stimulating purinergic receptors. Recent studies have shown that rapid exocytosis of ATP-enriched vesicles contributes to ATP release from liver cells. However, this rapid ATP release is transient, and ceases in ~30 s after the exposure to hypotonic solution. The purpose of these studies was to assess the role of vesicular exocytosis in sustained ATP release. An exposure to hypotonic solution evoked sustained ATP release that persisted for more than 15 min after the exposure. Using FM1-43 (N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide) fluorescence to measure exocytosis, we found that hypotonic solution stimulated a transient increase in FM1-43 fluorescence that lasted ~2 min. Notably, the rate of FM1-43 fluorescence and the magnitude of ATP release were not correlated, indicating that vesicular exocytosis may not mediate sustained ATP release from liver cells. Interestingly, mefloquine potently inhibited sustained ATP release, but did not inhibit an increase in FM1-43 fluorescence evoked by hypotonic solution. Consistent with these findings, when exocytosis of ATP-enriched vesicles was specifically stimulated by 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), mefloquine failed to inhibit ATP release evoked by NPPB. Thus, mefloquine can pharmacologically dissociate sustained ATP release and vesicular exocytosis. These results suggest that a distinct mefloquine-sensitive membrane ATP transport may contribute to sustained ATP release from liver cells. This novel mechanism of membrane ATP transport may play an important role in the regulation of purinergic signaling in liver cells
    corecore