20 research outputs found

    Alcohol Exposure Decreases CREB Binding Protein Expression and Histone Acetylation in the Developing Cerebellum

    Get PDF
    Fetal alcohol exposure affects 1 in 100 children making it the leading cause of mental retardation in the US. It has long been known that alcohol affects cerebellum development and function. However, the underlying molecular mechanism is unclear.We demonstrate that CREB binding protein (CBP) is widely expressed in granule and Purkinje neurons of the developing cerebellar cortex of naïve rats. We also show that exposure to ethanol during the 3(rd) trimester-equivalent of human pregnancy reduces CBP levels. CBP is a histone acetyltransferase, a component of the epigenetic mechanism controlling neuronal gene expression. We further demonstrate that the acetylation of both histone H3 and H4 is reduced in the cerebellum of ethanol-treated rats.These findings indicate that ethanol exposure decreases the expression and function of CBP in the developing cerebellum. This effect of ethanol may be responsible for the motor coordination deficits that characterize fetal alcohol spectrum disorders

    Relevance of the ancestry for the variability of the Drug-Metabolizing Enzymes CYP2C9, CYP2C19 and CYP2D6 polymorphisms in a multiethnic Costa Rican population

    No full text
    CYP2C9, CYP2C19 and CYP2D6 metabolize around 40 % of drugs and their genes vary across populations. The Costa Rican population has a trihybrid ancestry and its key geographic location turns it into a suitable scenario to evaluate interethnic differences across populations. This study aims to describe the diversity of CYP2C9, CYP2C19 and CYP2D6 polymorphisms in Costa Rican populations in the context of their ancestry. A total of 448 healthy individuals were included in the study: Bribri (n= 47), Cabécar (n= 27), Maleku (n= 16), Guaymí (n= 30), Huetar (n= 48), Chorotega (n= 41), Admixed/Mestizos from the Central Valley/Guanacaste (n= 189), and Afro-Caribbeans (n= 50) from Limón. CYP2C9 (alleles *2, *3, *6) and CYP2C19 (*2, *3, *4, *5, *17) genotypes were determined by Real-Time PCR. African, European and Native American ancestry were inferred using 87 ancestry informative markers. The frequency of the decreased activity allele CYP2C9*2 is lower in the self-reported Amerindian groups compared to the admixed population, and the highest frequencies of CYP2C19*2 (null activity) and the CYP2C19*17 (increased activity) were found in the self-reported Afro- Caribbean population. Moreover, a frequency of 0.7 % CYP2C9 gPMs in the Admixed population and a variable frequency of CYP2C19 gUMs (0.0-32.6 %, more prevalent in Afro-Caribbeans) in Costa Rican populations, was found. Finally, the following alleles were positively correlated with genomic African ancestry and negatively correlated with genomic Native American ancestry: CYP2D6*5 (null activity), CYP2D6*17 (decreased activity), CYP2D6*29 (decreased activity) and CYP2C19*17 (increased activity). No correlation for CYP2C9 polymorphisms and genomic ancestry was found. Further studies assessing the CYP2C9 and CYP2C19 sequence in these populations, preferentially by sequencing these genes, are warranted

    What Choline Metabolism Can Tell Us About the Underlying Mechanisms of Fetal Alcohol Spectrum Disorders

    No full text
    The consequences of fetal exposure to alcohol are very diverse and the likely molecular mechanisms involved must be able to explain how so many developmental processes could go awry. If pregnant rat dams are fed alcohol, their pups develop abnormalities characteristic of fetal alcohol spectrum disorders (FASD), but if these rat dams were also treated with choline, the effects from ethanol were attenuated in their pups. Choline is an essential nutrient in humans, and is an important methyl group donor. Alcohol exposure disturbs the metabolism of choline and other methyl donors. Availability of choline during gestation directly influences epigenetic marks on DNA and histones, and alters gene expression needed for normal neural and endothelial progenitor cell proliferation. Maternal diets low in choline alter development of the mouse hippocampus, and decrement memory for life. Women eating low-choline diets have an increased risk of having an infant with a neural tube or or ofacial cleft birth defect. Thus, the varied effects of choline could affect the expression of FASD, and studies on choline might shed some light on the underlying molecular mechanisms responsible for FASD
    corecore