9 research outputs found

    Sex and friendship in a multilevel society: behavioural patterns and associations between female and male Guinea baboons

    Get PDF
    One key question in social evolution is the identification of factors that promote the formation and maintenance of stable bonds between females and males beyond the mating context. Baboons lend themselves to examine this question, as they vary in social organisation and male-female association patterns. We report the results from the first systematic observations of individually identified wild female Guinea baboons. Guinea baboons live in a multilevel society with female-biased dispersal. Although several males could be found within 5 m of females, each female chiefly associated with one “primary” male at the 2 m distance. Social interactions occurred predominantly with the primary male, and female reproductive state had little influence on interaction patterns. The number of females per primary male varied from 1 to 4. During the 17-month study period, half of the females transferred between different males one or multiple times. A subset of females maintained weaker affiliative nonsexual relationships with other “secondary” males. Units composed of primary males with females, and occasional secondary males, apparently form the core of the Guinea baboon society. The social organisation and mating patterns of Guinea and hamadryas baboons may have a common evolutionary origin, despite notable differences in relationship quality. Specifically, Guinea baboon females appear to have greater leverage in their association patterns than hamadryas baboon females. Although we cannot yet explain the lack of overt male control over females, results generally support the notion that phylogenetic descent may play an important role in shaping social systems. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00265-015-2050-6) contains supplementary material, which is available to authorized users

    Measles Virus for Cancer Therapy

    No full text

    ALICE upgrades during the LHC Long Shutdown 2

    No full text
    A Large Ion Collider Experiment (ALICE) has been conceived and constructed as a heavy-ion experiment at the LHC. During LHC Runs 1 and 2, it has produced a wide range of physics results using all collision systems available at the LHC. In order to best exploit new physics opportunities opening up with the upgraded LHC and new detector technologies, the experiment has undergone a major upgrade during the LHC Long Shutdown 2 (2019–2022). This comprises the move to continuous readout, the complete overhaul of core detectors, as well as a new online event processing farm with a redesigned online-offline software framework. These improvements will allow to record Pb-Pb collisions at rates up to 50 kHz, while ensuring sensitivity for signals without a triggerable signature

    Anti-inflammatory Activity

    No full text
    corecore