12,042 research outputs found
Electric-field distribution in Au–semi-insulating GaAs contact investigated by positron-lifetime technique
Positron-lifetime spectroscopy has been used to investigate the electric-field distribution occurring at the Au–semi-insulating GaAs interface. Positrons implanted from a 22Na source and drifted back to the interface are detected through their characteristic lifetime at interface traps. The relative intensity of this fraction of interface-trapped positrons reveals that the field strength in the depletion region saturates at applied biases above 50 V, an observation that cannot be reconciled with a simple depletion approximation model. The data, are, however, shown to be fully consistent with recent direct electric-field measurements and the theoretical model proposed by McGregor et al. [J. Appl. Phys. 75, 7910 (1994)] of an enhanced EL2+ electron-capture cross section above a critical electric field that causes a dramatic reduction of the depletion region’s net charge density. Two theoretically derived electric field profiles, together with an experimentally based profile, are used to estimate a positron mobility of ∼95±35 cm2 V-1 s-1 under the saturation field. This value is higher than previous experiments would suggest, and reasons for this effect are discussed.published_or_final_versio
Memory-guided force output is associated with self-reported ADHD symptoms in young adults
This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.Attention-Deficit/Hyperactivity disorder (ADHD) is the most commonly diagnosed mental health
disorder in childhood and persists into adulthood in up to 65% of cases. ADHD is associated with
adverse outcomes such as the ability to gain and maintain employment (Kessler et al. 2009;
Kupper et al. 2012), and is associated with an increased risk for substance abuse (Groenman et al.
2013; Upadhyaya 2008; Wilens et al. 1995), obesity (Albayrak et al. 2013; Cortese et al. 2008;
Nazar et al. 2012; Nazar et al. 2014), workplace injuries (Breslin and Pole 2009; Hodgkins et al.
2011; Swensen et al. 2004), and traffic accidents (Barkley and Cox 2007; Barkley et al. 1993;
Jerome et al. 2006a; Jerome et al. 2006b; Merkel et al. 2013). A majority of diagnosed children
have motor deficits, however few studies have examined motor deficits in young adults. This study
provides a novel examination of visuomotor control of grip force in young adults with and without
ADHD. Participants were instructed to maintain force production over a 20-second trial with and
without real-time visual feedback about their performance. The results demonstrated that when
visual feedback was available, adults with ADHD produced slightly higher grip force than
controls. However, when visual feedback was removed, adults with ADHD had a faster rate of
decay of force, which was associated with ADHD symptom severity and trait impulsivity. These
findings suggest that there may be important differences in the way that adults with ADHD
integrate visual feedback during continuous motor tasks. These may account for some of the motor
impairments reported in children with ADHD. These deficits could result from (1) dysfunctional
sensory motor integration and/or (2) deficits in short-term visuomotor memoryThis study was supported by NIH NCATS TR000126 and NIH R01 MH084947
Emergent excitations in a geometrically frustrated magnet
Frustrated systems are ubiquitous and interesting because their behavior is
difficult to predict. Magnetism offers extreme examples in the form of spin
lattices where all interactions between spins cannot be simultaneously
satisfied. Such geometrical frustration leads to macroscopic degeneracies, and
offers the possibility of qualitatively new states of matter whose nature has
yet to be fully understood. Here we have discovered how novel composite spin
degrees of freedom can emerge from frustrated interactions in the cubic spinel
ZnCr2O4. Upon cooling, groups of six spins self-organize into weakly
interacting antiferromagnetic loops whose directors, defined as the unique
direction along which the spins are aligned parallel or antiparallel, govern
all low temperature dynamics. The experimental evidence comes from a
measurement of the magnetic form factor by inelastic neutron scattering. While
the data bears no resemblance to the atomic form factor for chromium, they are
perfectly consistent with the form factor for hexagonal spin loop directors.
The hexagon directors are to a first approximation decoupled from each other
and hence their reorientations embody the long-sought local zero energy modes
for the pyrochlore lattice.Comment: 10 pages, 4 figures upon reques
Machine-learning of atomic-scale properties based on physical principles
We briefly summarize the kernel regression approach, as used recently in
materials modelling, to fitting functions, particularly potential energy
surfaces, and highlight how the linear algebra framework can be used to both
predict and train from linear functionals of the potential energy, such as the
total energy and atomic forces. We then give a detailed account of the Smooth
Overlap of Atomic Positions (SOAP) representation and kernel, showing how it
arises from an abstract representation of smooth atomic densities, and how it
is related to several popular density-based representations of atomic
structure. We also discuss recent generalisations that allow fine control of
correlations between different atomic species, prediction and fitting of
tensorial properties, and also how to construct structural kernels---applicable
to comparing entire molecules or periodic systems---that go beyond an additive
combination of local environments
Penetration and intracellular uptake of poly(glycerol-adipate)nanoparticles into 3-dimensional brain tumour cell culture models
Nanoparticle (NP) drug delivery systems may potentially enhance the efficacy of therapeutic agents. It is difficult to characterise many important properties of NPs in vivo and therefore attempts have been made to use realistic in vitro multicellular spheroids instead. In this paper we have evaluated poly(glycerol-adipate) (PGA) NPs as a potential drug carrier for local brain cancer therapy. Various 3-dimensional (3-D) cell culture models have been used to investigate the delivery properties of PGA NPs. Tumour cells in 3-D culture showed a much higher level of endocytic uptake of NPs than a mixed normal neonatal brain cell population. Differences in endocytic uptake of NPs in 2-D and 3-D models strongly suggest that it is very important to use in vitro 3-D cell culture models for evaluating this parameter. Tumour penetration of NPs is another important parameter which could be studied in 3-D cell models. The penetration of PGA NPs through 3-D cell culture varied between models, which will therefore require further study to develop useful and realistic in vitro models. Further use of 3-D cell culture models will be of benefit in the future development of new drug delivery systems, particularly for brain cancers which are more difficult to study in vivo
Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework
Ordered two-dimensional covalent organic frameworks (COFs) have generally been synthesized using reversible reactions. It has been difficult to synthesize a similar degree of ordered COFs using irreversible reactions. Developing COFs with a fused aromatic ring system via an irreversible reaction is highly desirable but has remained a significant challenge. Here we demonstrate a COF that can be synthesized from organic building blocks via irreversible condensation (aromatization). The as-synthesized robust fused aromatic COF (F-COF) exhibits high crystallinity. Its lattice structure is characterized by scanning tunneling microscopy and X-ray diffraction pattern. Because of its fused aromatic ring system, the F-COF structure possesses high physiochemical stability, due to the absence of hydrolysable weak covalent bonds
Quantum spin liquid states in the two dimensional kagome antiferromagnets, ZnxCu4-x(OD)6Cl2
A three-dimensional system of interacting spins typically develops static
long-range order when it is cooled. If the spins are quantum (S = 1/2),
however, novel quantum paramagnetic states may appear. The most highly sought
state among them is the resonating valence bond (RVB) state in which every pair
of neighboring quantum spins form entangled spin singlets (valence bonds) and
the singlets are quantum mechanically resonating amongst all the possible
highly degenerate pairing states. Here we provide experimental evidence for
such quantum paramagnetic states existing in frustrated antiferromagnets,
ZnxCu4-x(OD)6Cl2, where the S = 1/2 magnetic Cu2+ moments form layers of a
two-dimensional kagome lattice. We find that in Cu4(OD)6Cl2, where distorted
kagome planes are weakly coupled to each other, a dispersionless excitation
mode appears in the magnetic excitation spectrum below ~ 20 K, whose
characteristics resemble those of quantum spin singlets in a solid state, known
as a valence bond solid (VBS), that breaks translational symmetry. Doping
nonmagnetic Zn2+ ions reduces the distortion of the kagome lattice, and weakens
the interplane coupling but also dilutes the magnetic occupancy of the kagome
lattice. The VBS state is suppressed and for ZnCu3(OD)6Cl2 where the kagome
planes are undistorted and 90% occupied by the Cu2+ ions, the low energy spin
fluctuations in the spin liquid phase become featureless
Virtual patients design and its effect on clinical reasoning and student experience : a protocol for a randomised factorial multi-centre study
Background
Virtual Patients (VPs) are web-based representations of realistic clinical cases. They are proposed as being an optimal method for teaching clinical reasoning skills. International standards exist which define precisely what constitutes a VP. There are multiple design possibilities for VPs, however there is little formal evidence to support individual design features. The purpose of this trial is to explore the effect of two different potentially important design features on clinical reasoning skills and the student experience. These are the branching case pathways (present or absent) and structured clinical reasoning feedback (present or absent).
Methods/Design
This is a multi-centre randomised 2x2 factorial design study evaluating two independent variables of VP design, branching (present or absent), and structured clinical reasoning feedback (present or absent).The study will be carried out in medical student volunteers in one year group from three university medical schools in the United Kingdom, Warwick, Keele and Birmingham. There are four core musculoskeletal topics. Each case can be designed in four different ways, equating to 16 VPs required for the research. Students will be randomised to four groups, completing the four VP topics in the same order, but with each group exposed to a different VP design sequentially. All students will be exposed to the four designs. Primary outcomes are performance for each case design in a standardized fifteen item clinical reasoning assessment, integrated into each VP, which is identical for each topic. Additionally a 15-item self-reported evaluation is completed for each VP, based on a widely used EViP tool. Student patterns of use of the VPs will be recorded.
In one centre, formative clinical and examination performance will be recorded, along with a self reported pre and post-intervention reasoning score, the DTI. Our power calculations indicate a sample size of 112 is required for both primary outcomes
A photonic quantum information interface
Quantum communication is the art of transferring quantum states, or quantum
bits of information (qubits), from one place to another. On the fundamental
side, this allows one to distribute entanglement and demonstrate quantum
nonlocality over significant distances. On the more applied side, quantum
cryptography offers, for the first time in human history, a provably secure way
to establish a confidential key between distant partners. Photons represent the
natural flying qubit carriers for quantum communication, and the presence of
telecom optical fibres makes the wavelengths of 1310 and 1550 nm particulary
suitable for distribution over long distances. However, to store and process
quantum information, qubits could be encoded into alkaline atoms that absorb
and emit at around 800 nm wavelength. Hence, future quantum information
networks made of telecom channels and alkaline memories will demand interfaces
able to achieve qubit transfers between these useful wavelengths while
preserving quantum coherence and entanglement. Here we report on a qubit
transfer between photons at 1310 and 710 nm via a nonlinear up-conversion
process with a success probability greater than 5%. In the event of a
successful qubit transfer, we observe strong two-photon interference between
the 710 nm photon and a third photon at 1550 nm, initially entangled with the
1310 nm photon, although they never directly interacted. The corresponding
fidelity is higher than 98%.Comment: 7 pages, 3 figure
- …
