73 research outputs found
A note on "symmetric" vielbeins in bimetric, massive, perturbative and non perturbative gravities
We consider a manifold endowed with two different vielbeins
and corresponding to two different metrics and
. Such a situation arises generically in bimetric or massive
gravity (including the recently discussed version of de Rham, Gabadadze and
Tolley), as well as in perturbative quantum gravity where one vielbein
parametrizes the background space-time and the other the dynamical degrees of
freedom. We determine the conditions under which the relation can be
imposed (or the "Deser-van Nieuwenhuizen" gauge chosen). We clarify and correct
various statements which have been made about this issue.Comment: 20 pages. Section 7, prop. 6 and 7. added. Some results made more
precis
Foundations of Black Hole Accretion Disk Theory
This review covers the main aspects of black hole accretion disk theory. We
begin with the view that one of the main goals of the theory is to better
understand the nature of black holes themselves. In this light we discuss how
accretion disks might reveal some of the unique signatures of strong gravity:
the event horizon, the innermost stable circular orbit, and the ergosphere. We
then review, from a first-principles perspective, the physical processes at
play in accretion disks. This leads us to the four primary accretion disk
models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin)
disks, slim disks, and advection-dominated accretion flows (ADAFs). After
presenting the models we discuss issues of stability, oscillations, and jets.
Following our review of the analytic work, we take a parallel approach in
reviewing numerical studies of black hole accretion disks. We finish with a few
select applications that highlight particular astrophysical applications:
measurements of black hole mass and spin, black hole vs. neutron star accretion
disks, black hole accretion disk spectral states, and quasi-periodic
oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at
http://www.livingreviews.org/lrr-2013-
Relativistic Dynamics and Extreme Mass Ratio Inspirals
It is now well-established that a dark, compact object (DCO), very likely a
massive black hole (MBH) of around four million solar masses is lurking at the
centre of the Milky Way. While a consensus is emerging about the origin and
growth of supermassive black holes (with masses larger than a billion solar
masses), MBHs with smaller masses, such as the one in our galactic centre,
remain understudied and enigmatic. The key to understanding these holes - how
some of them grow by orders of magnitude in mass - lies in understanding the
dynamics of the stars in the galactic neighbourhood. Stars interact with the
central MBH primarily through their gradual inspiral due to the emission of
gravitational radiation. Also stars produce gases which will subsequently be
accreted by the MBH through collisions and disruptions brought about by the
strong central tidal field. Such processes can contribute significantly to the
mass of the MBH and progress in understanding them requires theoretical work in
preparation for future gravitational radiation millihertz missions and X-ray
observatories. In particular, a unique probe of these regions is the
gravitational radiation that is emitted by some compact stars very close to the
black holes and which could be surveyed by a millihertz gravitational wave
interferometer scrutinizing the range of masses fundamental to understanding
the origin and growth of supermassive black holes. By extracting the
information carried by the gravitational radiation, we can determine the mass
and spin of the central MBH with unprecedented precision and we can determine
how the holes "eat" stars that happen to be near them.Comment: Update from the first version, 151 pages, accepted for publication @
Living Reviews in Relativit
Modern tests of Lorentz invariance
Motivated by ideas about quantum gravity, a tremendous amount of effort over
the past decade has gone into testing Lorentz invariance in various regimes.
This review summarizes both the theoretical frameworks for tests of Lorentz
invariance and experimental advances that have made new high precision tests
possible. The current constraints on Lorentz violating effects from both
terrestrial experiments and astrophysical observations are presented.Comment: Modified and expanded discussions of various points. Numerous
references added. Version matches that accepted by Living Reviews in
Relativit
Manifestations of a Massive Black Hole in the Galactic Center
A young star cluster is a less contrived explanation than a massive black hole for many of the features seen in the Galactic center. However from a Copernican point of view, this explanation is less attractive than a black hole. The evidence for a ~ 10^6 M_⊙ black hole is becoming progressively less convincing, but the case against it is no stronger. We describe the development of a singular star cluster, as well as the processes of stellar disruption, merging, and gas accretion in such a cluster. Recently merged stars and tidally stripped giants may be detectable within an arcminute of the Galactic Center. We examine the physics of star formation in the inner parsecs of the galaxy, and the problem of maintaining the two parsec molecular torus
The Confrontation between General Relativity and Experiment
The status of experimental tests of general relativity and of theoretical
frameworks for analysing them is reviewed. Einstein's equivalence principle
(EEP) is well supported by experiments such as the Eotvos experiment, tests of
special relativity, and the gravitational redshift experiment. Future tests of
EEP and of the inverse square law are searching for new interactions arising
from unification or quantum gravity. Tests of general relativity at the
post-Newtonian level have reached high precision, including the light
deflection, the Shapiro time delay, the perihelion advance of Mercury, and the
Nordtvedt effect in lunar motion. Gravitational-wave damping has been detected
in an amount that agrees with general relativity to better than half a percent
using the Hulse-Taylor binary pulsar, and other binary pulsar systems have
yielded other tests, especially of strong-field effects. When direct
observation of gravitational radiation from astrophysical sources begins, new
tests of general relativity will be possible.Comment: 89 pages, 8 figures; an update of the Living Review article
originally published in 2001; final published version incorporating referees'
suggestion
- …
