2,693 research outputs found

    Chern-Simons black holes: scalar perturbations, mass and area spectrum and greybody factors

    Full text link
    We study the Chern-Simons black holes in d-dimensions and we calculate analytically the quasi-normal modes of the scalar perturbations and we show that they depend on the highest power of curvature present in the Chern-Simons theory. We obtain the mass and area spectrum of these black holes and we show that they have a strong dependence on the topology of the transverse space and they are not evenly spaced. We also calculate analytically the reflection and transmission coefficients and the absorption cross section and we show that at low frequency limit there is a range of modes which contributes to the absorption cross section.Comment: 19 pages, 18 figures, the title has been changed to reflect the addition of an another section on the reflection, transmission coefficients and absorption cross sections of the Chern-Simons black holes. Version to be published in JHE

    Interstellar Dust Close to the Sun

    Get PDF
    The low density interstellar medium (ISM) close to the Sun and inside of the heliosphere provides a unique laboratory for studying interstellar dust grains. Grain characteristics in the nearby ISM are obtained from observations of interstellar gas and dust inside of the heliosphere and the interstellar gas towards nearby stars. Comparison between the gas composition and solar abundances suggests that grains are dominated by olivines and possibly some form of iron oxide. Measurements of the interstellar Ne/O ratio by the Interstellar Boundary Explorer spacecraft indicate that a high fraction of interstellar oxygen in the ISM must be depleted onto dust grains. Local interstellar abundances are consistent with grain destruction in ~150 km/s interstellar shocks, provided that the carbonaceous component is hydrogenated amorphous carbon and carbon abundances are correct. Variations in relative abundances of refractories in gas suggest variations in the history of grain destruction in nearby ISM. The large observed grains, > 1 micron, may indicate a nearby reservoir of denser ISM. Theoretical three-dimensional models of the interaction between interstellar dust grains and the solar wind predict that plumes of about 0.18 micron dust grains form around the heliosphere.Comment: 2011 AGOS Taiwan meeting; accepted for publication in Earth, Planets and Spac

    Can We Really Prevent Suicide?

    Get PDF
    Every year, suicide is among the top 20 leading causes of death globally for all ages. Unfortunately, suicide is difficult to prevent, in large part because the prevalence of risk factors is high among the general population. In this review, clinical and psychological risk factors are examined and methods for suicide prevention are discussed. Prevention strategies found to be effective in suicide prevention include means restriction, responsible media coverage, and general public education, as well identification methods such as screening, gatekeeper training, and primary care physician education. Although the treatment for preventing suicide is difficult, follow-up that includes pharmacotherapy, psychotherapy, or both may be useful. However, prevention methods cannot be restricted to the individual. Community, social, and policy interventions will also be essentia

    Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing E_T

    Get PDF
    We examine the prospects for testing SO(10) Yukawa-unified supersymmetric models during the first year of LHC running at \sqrt{s}= 7 TeV, assuming integrated luminosity values of 0.1 to 1 fb^-1. We consider two cases: the Higgs splitting (HS) and the D-term splitting (DR3) models. Each generically predicts light gluinos and heavy squarks, with an inverted scalar mass hierarchy. We hence expect large rates for gluino pair production followed by decays to final states with large b-jet multiplicity. For 0.2 fb^-1 of integrated luminosity, we find a 5 sigma discovery reach of m(gluino) ~ 400 GeV even if missing transverse energy, E_T^miss, is not a viable cut variable, by examining the multi-b-jet final state. A corroborating signal should stand out in the opposite-sign (OS) dimuon channel in the case of the HS model; the DR3 model will require higher integrated luminosity to yield a signal in the OS dimuon channel. This region may also be probed by the Tevatron with 5-10 fb^-1 of data, if a corresponding search in the multi-b+ E_T^miss channel is performed. With higher integrated luminosities of ~1 fb^-1, using E_T^miss plus a large multiplicity of b-jets, LHC should be able to discover Yukawa-unified SUSY with m(gluino) up to about 630 GeV. Thus, the year 1 LHC reach for Yukawa-unified SUSY should be enough to either claim a discovery of the gluino, or to very nearly rule out this class of models, since higher values of m(gluino) lead to rather poor Yukawa unification.Comment: 32 pages including 31 EPS figure

    Planet Populations as a Function of Stellar Properties

    Full text link
    Exoplanets around different types of stars provide a window into the diverse environments in which planets form. This chapter describes the observed relations between exoplanet populations and stellar properties and how they connect to planet formation in protoplanetary disks. Giant planets occur more frequently around more metal-rich and more massive stars. These findings support the core accretion theory of planet formation, in which the cores of giant planets form more rapidly in more metal-rich and more massive protoplanetary disks. Smaller planets, those with sizes roughly between Earth and Neptune, exhibit different scaling relations with stellar properties. These planets are found around stars with a wide range of metallicities and occur more frequently around lower mass stars. This indicates that planet formation takes place in a wide range of environments, yet it is not clear why planets form more efficiently around low mass stars. Going forward, exoplanet surveys targeting M dwarfs will characterize the exoplanet population around the lowest mass stars. In combination with ongoing stellar characterization, this will help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet

    Neutron Majorana mass from exotic instantons

    Get PDF
    We show how a Majorana mass for the Neutron could result from non-perturbative quantum gravity effects peculiar to string theory. In particular, "exotic instantons" in un-oriented string compactifications with D-branes extending the (supersymmetric) standard model could indirectly produce an effective operator delta{m} n^t n+h.c. In a specific model with an extra vector-like pair of `quarks', acquiring a large mass proportional to the string mass scale (exponentially suppressed by a function of the string moduli fields), delta{m} can turn out to be as low as 10^{-24}-10^{-25} eV. The induced neutron-antineutron oscillations could take place with a time scale tau_{n\bar{n}} > 10^8 s, that could be tested by the next generation of experiments. On the other hand, proton decay and FCNC's are automatically strongly suppressed and are compatible with the current experimental limits. Depending on the number of brane intersections, the model may also lead to the generation of Majorana masses for R-handed neutrini. Our proposal could also suggest neutron-neutralino or neutron-axino oscillations, with implications in UCN, Dark Matter Direct Detection, UHECR and Neutron-Antineutron oscillations. This suggests to improve the limits on neutron-antineutron oscillations, as a possible test of string theory and quantum gravity.Comment: 35 pages, 11 figures. More comments on neutron-neutralino mixin

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit

    Back reaction, covariant anomaly and effective action

    Full text link
    In the presence of back reaction, we first produce the one-loop corrections for the event horizon and Hawking temperature of the Reissner-Nordstr\"om black hole. Then, based on the covariant anomaly cancelation method and the effective action technique, the modified expressions for the fluxes of gauge current and energy momentum tensor, due to the effect of back reaction, are obtained. The results are consistent with the Hawking fluxes of a (1+1)-dimensional blackbody at the temperature with quantum corrections, thus confirming the robustness of the covariant anomaly cancelation method and the effective action technique for black holes with back reaction.Comment: 17 page

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    corecore