2,855 research outputs found
The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells
Methylammonium lead iodide perovskite can make high-efficiency solar cells, which also show an unexplained photocurrent hysteresis dependent on the device-poling history. Here we report quasielastic neutron scattering measurements showing that dipolar CH3NH3+ ions reorientate between the faces, corners or edges of the pseudo-cubic lattice cages in CH3NH3PbI3 crystals with a room temperature residence time of ~14 ps. Free rotation, π-flips and ionic diffusion are ruled out within a 1–200-ps time window. Monte Carlo simulations of interacting CH3NH3+ dipoles realigning within a 3D lattice suggest that the scattering measurements may be explained by the stabilization of CH3NH3+ in either antiferroelectric or ferroelectric domains. Collective realignment of CH3NH3+ to screen a device’s built-in potential could reduce photovoltaic performance. However, we estimate the timescale for a domain wall to traverse a typical device to be ~0.1–1 ms, faster than most observed hysteresis
Recommended from our members
Where does the time go? Assessing the chronostratigraphic fidelity of sedimentary geological outcrops in the pliocene–pleistocene red crag formation, eastern england
It is widely understood that Earth’s stratigraphic record is an incomplete record of time, but the implications that this has for interpreting sedimentary outcrop has received little attention. Here we consider how time is preserved at outcrop using the Neogene-Quaternary Red Crag Formation, England. The Red Crag Formation hosts sedimentological and ichnological proxies that can be used to assess the time taken to accumulate outcrop expressions of strata, as ancient depositional environments fluctuated between states of deposition, erosion and stasis. We use these to estimate how much time is preserved at outcrop scale and find that every outcrop provides only a vanishingly small window onto unanchored weeks to months within the 600-800 ka of ‘Crag-time’. Much of the apparently missing time may be accounted for by the parts of the formation at subcrop, rather than outcrop: stratigraphic time has not been lost, but is hidden. The time-completeness of the Red Crag Formation at outcrop appears analogous to that recorded in much older rock units, implying that direct comparison between strata of all ages is valid and that perceived stratigraphic incompleteness is an inconsequential barrier to viewing the outcrop sedimentary-stratigraphic record as a truthful chronicle of Earth history
Recommended from our members
A graphic method for depicting horizontal direction data on vertical outcrop photographs
Outcrop photographs which show two-dimensional representations of three-dimensionally dipping surfaces (e.g., bedding planes, cross-bed foresets) are commonly utilized in the description of sedimentary strata. In many instances, accurate depiction of the dip direction of such features is paramount for understanding their interpretation, and for visualizing the true form of three-dimensional bodies (e.g., conceptualizing the form of an architectural element in a cliff-face, preserved as a vertical slice that has been cut oblique to paleocurrent direction). However, as an outcrop photograph often presents information on a vertical plane and directional data refers to a horizontal plane, the accurate co-depiction of both sets of information may be challenging. There is presently no universal method for illustrating such measurements on outcrop photographs: techniques in common usage are often imprecise, and the lack of uniformity hinders comparison between different images. Here we present a method for accurately depicting horizontal direction data on vertical outcrop photographs which permits instant visualization of dip relative to the illustrated outcrop geometry. The method is simple to apply, does not compromise primary data, and is unobtrusive to other visual information within images; thus having utility across a broad spectrum of geological investigations
Recommended from our members
Evolutionary synchrony of Earth's biosphere and sedimentary-stratigraphic record
The landscapes and seascapes of Earth’s surface provide the theatre for life, but to what extent did the actors build the stage? The role of life in the long-term shaping of the planetary surface needs to be understood to ascertain whether Earth is singular among known rocky planets, and to frame predictions of future changes to the biosphere. Modern geomorphic observations and modelling have made strides in this respect, but an under-utilized lens through which to interrogate these questions resides in the most complete tangible record of our planetary history: the sedimentary-stratigraphic record (SSR). The characteristics of the SSR have been frequently explained with reference to changes in boundary conditions such as relative sea level, climate, and tectonics. Yet despite the fact that the long-term accrual of the SSR was contemporaneous with the evolution of almost all domains of life on Earth, causal explanations related to biological activity have often been overlooked, particularly within siliciclastic strata. This paper explores evidence for the ways in which organisms have influenced the SSR throughout Earth history and emphasizes that further investigation can help lead us towards a mechanistic understanding of how the planetary surface has co-evolved with life. The practicality of discerning life signatures in the SSR is discussed by: 1) distinguishing biologically-dependent versus biologically-influenced sedimentary signatures; 2) emphasizing the importance of determining relative time-length scales of processes and demonstrating how different focal lengths of observation (individual geological outcrops and the complete SSR) can reveal different insights; and 3) promoting an awareness of issues of equifinality and underdetermination that may hinder the recognition of life signatures. Multiple instances of life signatures and their historic range within the SSR are reviewed, with examples covering siliciclastic, biogenic and chemogenic strata, and trigger organisms from across the spectrum of Earth’s extant and ancient life. With this novel perspective, the SSR is recognised as a dynamic archive that expands and complements the fossil and geochemical records that it hosts, rather than simply being a passive repository for them. The SSR is shown to be both the record and the result of long-term evolutionary synchrony between life and planetary surface processes
Search For Heavy Pointlike Dirac Monopoles
We have searched for central production of a pair of photons with high
transverse energies in collisions at TeV using of data collected with the D\O detector at the Fermilab Tevatron in
1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could
rescatter pairs of nearly real photons into this final state via a box diagram.
We observe no excess of events above background, and set lower 95% C.L. limits
of on the mass of a spin 0, 1/2, or 1 Dirac
monopole.Comment: 12 pages, 4 figure
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
Search for High Mass Photon Pairs in p-pbar --> gamma-gamma-jet-jet Events at sqrt(s)=1.8 TeV
A search has been carried out for events in the channel p-barp --> gamma
gamma jet jet. Such a signature can characterize the production of a
non-standard Higgs boson together with a W or Z boson. We refer to this
non-standard Higgs, having standard model couplings to vector bosons but no
coupling to fermions, as a "bosonic Higgs." With the requirement of two high
transverse energy photons and two jets, the diphoton mass (m(gamma gamma))
distribution is consistent with expected background. A 90(95)% C.L. upper limit
on the cross section as a function of mass is calculated, ranging from
0.60(0.80) pb for m(gamma gamma) = 65 GeV/c^2 to 0.26(0.34) pb for m(gamma
gamma) = 150 GeV/c^2, corresponding to a 95% C.L. lower limit on the mass of a
bosonic Higgs of 78.5 GeV/c^2.Comment: 9 pages, 3 figures. Replacement has new H->gamma gamma branching
ratios and corresponding new mass limit
Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV
The inclusive cross section for production of isolated photons has been
measured in \pbarp collisions at GeV with the \D0 detector at
the Fermilab Tevatron Collider. The photons span a transverse energy ()
range from 7-49 GeV and have pseudorapidity . This measurement is
combined with to previous \D0 result at GeV to form a ratio
of the cross sections. Comparison of next-to-leading order QCD with the
measured cross section at 630 GeV and ratio of cross sections show satisfactory
agreement in most of the range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001
Transcriptional role of cyclin D1 in development revealed by a “genetic-proteomic” screen
Author manuscript: 2010 September 22.Cyclin D1 belongs to the core cell cycle machinery, and it is frequently overexpressed in human cancers[superscript 1, 2]. The full repertoire of cyclin D1 functions in normal development and oncogenesis is unclear at present. Here we developed Flag- and haemagglutinin-tagged cyclin D1 knock-in mouse strains that allowed a high-throughput mass spectrometry approach to search for cyclin D1-binding proteins in different mouse organs. In addition to cell cycle partners, we observed several proteins involved in transcription. Genome-wide location analyses (chromatin immunoprecipitation coupled to DNA microarray; ChIP-chip) showed that during mouse development cyclin D1 occupies promoters of abundantly expressed genes. In particular, we found that in developing mouse retinas—an organ that critically requires cyclin D1 function[superscript 3, 4]—cyclin D1 binds the upstream regulatory region of the Notch1 gene, where it serves to recruit CREB binding protein (CBP) histone acetyltransferase. Genetic ablation of cyclin D1 resulted in decreased CBP recruitment, decreased histone acetylation of the Notch1 promoter region, and led to decreased levels of the Notch1 transcript and protein in cyclin D1-null (Ccnd1-/-) retinas. Transduction of an activated allele of Notch1 into Ccnd1-/- retinas increased proliferation of retinal progenitor cells, indicating that upregulation of Notch1 signalling alleviates the phenotype of cyclin D1-deficiency. These studies show that in addition to its well-established cell cycle roles, cyclin D1 has an in vivo transcriptional function in mouse development. Our approach, which we term ‘genetic–proteomic’, can be used to study the in vivo function of essentially any protein
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- …
