94 research outputs found
Superpixel-based spatial amplitude and phase modulation using a digital micromirror device.
This is the final version of the article. Available via open access from Optical Society of America via the DOI in this record.We present a superpixel method for full spatial phase and amplitude control of a light beam using a digital micromirror device (DMD) combined with a spatial filter. We combine square regions of nearby micromirrors into superpixels by low pass filtering in a Fourier plane of the DMD. At each superpixel we are able to independently modulate the phase and the amplitude of light, while retaining a high resolution and the very high speed of a DMD. The method achieves a measured fidelity F = 0.98 for a target field with fully independent phase and amplitude at a resolution of 8 × 8 pixels per diffraction limited spot. For the LG10 orbital angular momentum mode the calculated fidelity is F = 0.99993, using 768 × 768 DMD pixels. The superpixel method reduces the errors when compared to the state of the art Lee holography method for these test fields by 50% and 18%, with a comparable light efficiency of around 5%. Our control software is publicly available.We thank Duygu Akbulut, Hasan Yılmaz, Henri Thyrrestrup, Michael J. Van De Graaff, Pepijn W.H. Pinkse, Ad Lagendijk and Willem L. Vos for discussions. This work is part of the research program of the Stichting voor Fundamenteel Onderzoek der Materie (FOM). A.P.M. acknowledges European Research Council grant no. 279248
Optical transmission matrix as a probe of the photonic strength
We demonstrate that optical transmission matrices (TM) of disordered complex media provide a powerful tool to extract the photonic interaction strength, independent of surface effects. We measure TM of strongly scattering GaP nanowires and plot the singular value density of the measured matrices and a random matrix model. By varying the free parameters of the model, the transport mean free path and effective refractive index, we retrieve the photonic interaction strength. From numerical simulations we conclude that TM statistics is hardly sensitive to surface effects, in contrast to enhanced backscattering or total transmission based methods.We acknowledge support from ERC grant 27948, NWOVici, STW, the Royal Society, and EPSRC through fellowship EP/J016918/1
High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging
Progress in neuroscience constantly relies on the development of new
techniques to investigate the complex dynamics of neuronal networks. An ongoing
challenge is to achieve minimally-invasive and high-resolution observations of
neuronal activity in vivo inside deep brain areas. A perspective strategy is to
utilise holographic control of light propagation in complex media, which allows
converting a hair-thin multimode optical fibre into an ultra-narrow imaging
tool. Compared to current endoscopes based on GRIN lenses or fibre bundles,
this concept offers a footprint reduction exceeding an order of magnitude,
together with a significant enhancement in resolution. We designed a compact
and high-speed system for fluorescent imaging at the tip of a fibre, achieving
micron-scale resolution across a 50 um field of view, and yielding 7-kilopixel
images at a rate of 3.5 frames/s. Furthermore, we demonstrate in vivo
observations of cell bodies and processes of inhibitory neurons within deep
layers of the visual cortex and hippocampus of anesthetised mice. This study
forms the basis for several perspective techniques of modern microscopy to be
delivered deep inside the tissue of living animal models while causing minimal
impact on its structural and functional properties.Comment: 10 pages, 2 figures, Supplementary movie:
https://drive.google.com/file/d/1Fm0G3TAIC49LVX6FaEiAtlefkWx1T2a5/vie
Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)
Focusing of light in the diffusive regime inside scattering media has long been considered impossible. Recently, this limitation has been overcome with time reversal of ultrasound-encoded light (TRUE), but the resolution of this approach is fundamentally limited by the large number of optical modes within the ultrasound focus. Here, we introduce a new approach, time reversal of variance-encoded light (TROVE), which demixes these spatial modes by variance encoding to break the resolution barrier imposed by the ultrasound. By encoding individual spatial modes inside the scattering sample with unique variances, we effectively uncouple the system resolution from the size of the ultrasound focus. This enables us to demonstrate optical focusing and imaging with diffuse light at an unprecedented, speckle-scale lateral resolution of ~5 µm
Designing disorder
This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordMetasurfaces can in principle provide a versatile platform for optical functionalities, but in practice designing and fabricating them to specifications can be difficult. Now, the realization of metasurfaces with engineered disorder allows for versatile optical components that combine the best features of periodic and random systems
Controlling waves in space and time for imaging and focusing in complex media
In complex media such as white paint and biological tissue, light encounters nanoscale refractive-index inhomogeneities that cause multiple scattering. Such scattering is usually seen as an impediment to focusing and imaging. However, scientists have recently used strongly scattering materials to focus, shape and compress waves by controlling the many degrees of freedom in the incident waves. This was first demonstrated in the acoustic and microwave domains using time reversal, and is now being performed in the optical realm using spatial light modulators to address the many thousands of spatial degrees of freedom of light. This approach is being used to investigate phenomena such as optical super-resolution and the time reversal of light, thus opening many new avenues for imaging and focusing in turbid medi
Wavefront shaping with disorder-engineered metasurfaces
Recently, wavefront shaping with disordered media has demonstrated optical manipulation capabilities beyond those of conventional optics, including extended volume, aberration-free focusing and subwavelength focusing. However, translating these capabilities to useful applications has remained challenging as the input–output characteristics of the disordered media (P variables) need to be exhaustively determined via O(P) measurements. Here, we propose a paradigm shift where the disorder is specifically designed so its exact input–output characteristics are known a priori and can be used with only a few alignment steps. We implement this concept with a disorder-engineered metasurface, which exhibits additional unique features for wavefront shaping such as a large optical memory effect range in combination with a wide angular scattering range, excellent stability, and a tailorable angular scattering profile. Using this designed metasurface with wavefront shaping, we demonstrate high numerical aperture (NA > 0.5) focusing and fluorescence imaging with an estimated ~2.2 × 10^8 addressable points in an ~8 mm field of view
Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre
Holographic optical tweezers (HOT) hold great promise for many applications in biophotonics, allowing the creation and measurement of minuscule forces on biomolecules, molecular motors and cells. Geometries used in HOT currently rely on bulk optics, and their exploitation in vivo is compromised by the optically turbid nature of tissues. We present an alternative HOT approach in which multiple three-dimensional (3D) traps are introduced through a high-numerical-aperture multimode optical fibre, thus enabling an equally versatile means of manipulation through channels having cross-section comparable to the size of a single cell. Our work demonstrates real-time manipulation of 3D arrangements of micro-objects, as well as manipulation inside otherwise inaccessible cavities. We show that the traps can be formed over fibre lengths exceeding 100 mm and positioned with nanometric resolution. The results provide the basis for holographic manipulation and other high-numerical-aperture techniques, including advanced microscopy, through single-core-fibre endoscopes deep inside living tissues and other complex environments
Scattering invariant modes of light in complex media
Random scattering of light in disordered media is an intriguing phenomenon of
fundamental relevance to various applications. While techniques such as
wavefront shaping and transmission matrix measurements have enabled remarkable
progress for advanced imaging concepts, the most successful strategy to obtain
clear images through a disordered medium remains the filtering of ballistic
light. Ballistic photons with a scattering-free propagation are, however,
exponentially rare and no method so far can increase their proportion. To
address these limitations, we introduce and experimentally implement here a new
set of optical states that we term Scattering Invariant Modes (SIMs), whose
transmitted field pattern is the same, irrespective of whether they scatter
through a disordered sample or propagate ballistically through a homogeneous
medium. We observe SIMs that are only weakly attenuated in dense scattering
media, and show in simulations that their correlations with the ballistic light
can be used to improve imaging inside scattering materials
Translation correlations in anisotropically scattering media
Controlling light propagation across scattering media by wavefront shaping
holds great promise for a wide range of communications and imaging
applications. However, finding the right wavefront to shape is a challenge when
the mapping between input and output scattered wavefronts (i.e. the
transmission matrix) is not known. Correlations in transmission matrices,
especially the so-called memory-effect, have been exploited to address this
limitation. However, the traditional memory-effect applies to thin scattering
layers at a distance from the target, which precludes its use within thick
scattering media, such as fog and biological tissue. Here, we theoretically
predict and experimentally verify new transmission matrix correlations within
thick anisotropically scattering media, with important implications for
biomedical imaging and adaptive optics.Comment: main article (18 pages) and appendices (6 pages
- …
