399 research outputs found
Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications.
Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylated DNA binding domain sequencing (MBD-seq). We applied all four methods to biological replicates of human embryonic stem cells to assess their genome-wide CpG coverage, resolution, cost, concordance and the influence of CpG density and genomic context. The methylation levels assessed by the two bisulfite methods were concordant (their difference did not exceed a given threshold) for 82% for CpGs and 99% of the non-CpG cytosines. Using binary methylation calls, the two enrichment methods were 99% concordant and regions assessed by all four methods were 97% concordant. We combined MeDIP-seq with methylation-sensitive restriction enzyme (MRE-seq) sequencing for comprehensive methylome coverage at lower cost. This, along with RNA-seq and ChIP-seq of the ES cells enabled us to detect regions with allele-specific epigenetic states, identifying most known imprinted regions and new loci with monoallelic epigenetic marks and monoallelic expression
Identification of critical paralog groups with indispensable roles in the regulation of signaling flow
Extensive cross-talk between signaling pathways is required to integrate the myriad of extracellular signal combinations at the cellular level. Gene duplication events may lead to the emergence of novel functions, leaving groups of similar genes - termed paralogs - in the genome. To distinguish critical paralog groups (CPGs) from other paralogs in human signaling networks, we developed a signaling network-based method using cross-talk annotation and tissue-specific signaling flow analysis. 75 CPGs were found with higher degree, betweenness centrality, closeness, and ‘bowtieness’ when compared to other paralogs or other proteins in the signaling network. CPGs had higher diversity in all these measures, with more varied biological functions and more specific post-transcriptional regulation than non-critical paralog groups (non-CPG). Using TGF-beta, Notch and MAPK pathways as examples, SMAD2/3, NOTCH1/2/3 and MEK3/6-p38 CPGs were found to regulate the signaling flow of their respective pathways. Additionally, CPGs showed a higher mutation rate in both inherited diseases and cancer, and were enriched in drug targets. In conclusion, the results revealed two distinct types of paralog groups in the signaling network: CPGs and non-CPGs. Thus highlighting the importance of CPGs as compared to non-CPGs in drug discovery and disease pathogenesis
Challenge clusters facing LCA in environmental decision-making—what we can learn from biofuels
Purpose Bioenergy is increasingly used to help meet greenhouse gas (GHG) and renewable energy targets. However, bioenergy’s sustainability has been questioned, resulting in increasing use of life cycle assessment (LCA). Bioenergy systems are global and complex, and market forces can result in significant changes, relevant to LCA and policy. The goal of this paper is to illustrate the complexities associated with LCA, with particular focus on bioenergy and associated policy development, so that its use can more effectively inform policymakers. Methods The review is based on the results from a series of workshops focused on bioenergy life cycle assessment. Expert submissions were compiled and categorized within the first two workshops. Over 100 issues emerged. Accounting for redundancies and close similarities in the list, this reduced to around 60 challenges, many of which are deeply interrelated. Some of these issues were then explored further at a policyfacing workshop in London, UK. The authors applied a rigorous approach to categorize the challenges identified to be at the intersection of biofuels/bioenergy LCA and policy. Results and discussion The credibility of LCA is core to its use in policy. Even LCAs that comply with ISO standards and policy and regulatory instruments leave a great deal of scope for interpretation and flexibility. Within the bioenergy sector, this has led to frustration and at times a lack of obvious direction. This paper identifies the main challenge clusters: overarching issues, application and practice and value and ethical judgments. Many of these are reflective of the transition from application of LCA to assess individual products or systems to the wider approach that is becoming more common. Uncertainty in impact assessment strongly influences planning and compliance due to challenges in assigning accountability, and communicating the inherent complexity and uncertainty within bioenergy is becoming of greater importance. Conclusions The emergence of LCA in bioenergy governance is particularly significant because other sectors are likely to transition to similar governance models. LCA is being stretched to accommodate complex and broad policy-relevant questions, seeking to incorporate externalities that have major implications for long-term sustainability. As policy increasingly relies on LCA, the strains placed on the methodology are becoming both clearer and impedimentary. The implications for energy policy, and in particular bioenergy, are large
Therapeutic decision-making for patients with fluctuating mitral regurgitation
Mitral regurgitation (MR) is a common, progressive, and difficult-to-manage disease. MR is dynamic in nature, with physiological fluctuations occurring in response to various stimuli such as exercise and ischaemia, which can precipitate the development of symptoms and subsequent cardiac events. In both chronic primary and secondary MR, the dynamic behaviour of MR can be reliably examined during stress echocardiography. Dynamic fluctuation of MR can also have prognostic value; patients with a marked increase in regurgitant volume or who exhibit increased systolic pulmonary artery pressure during exercise have lower symptom-free survival than those who do not experience significant changes in MR and systolic pulmonary artery pressure during exercise. Identifying patients who have dynamic MR, and understanding the mechanisms underlying the condition, can potentially influence revascularization strategies (such as the surgical restoration of coronary blood flow) and interventional treatment (including cardiac resynchronization therapy and new approaches targeted to the mitral valve)
Flux-sum analysis: a metabolite-centric approach for understanding the metabolic network
<p>Abstract</p> <p>Background</p> <p>Constraint-based flux analysis of metabolic network model quantifies the reaction flux distribution to characterize the state of cellular metabolism. However, metabolites are key players in the metabolic network and the current reaction-centric approach may not account for the effect of metabolite perturbation on the cellular physiology due to the inherent limitation in model formulation. Thus, it would be practical to incorporate the metabolite states into the model for the analysis of the network.</p> <p>Results</p> <p>Presented herein is a metabolite-centric approach of analyzing the metabolic network by including the turnover rate of metabolite, known as flux-sum, as key descriptive variable within the model formulation. By doing so, the effect of varying metabolite flux-sum on physiological change can be simulated by resorting to mixed integer linear programming. From the results, we could classify various metabolite types based on the flux-sum profile. Using the <it>i</it>AF1260 <it>in silico </it>metabolic model of <it>Escherichia coli</it>, we demonstrated that this novel concept complements the conventional reaction-centric analysis.</p> <p>Conclusions</p> <p>Metabolite flux-sum analysis elucidates the roles of metabolites in the network. In addition, this metabolite perturbation analysis identifies the key metabolites, implicating practical application which is achievable through metabolite flux-sum manipulation in the areas of biotechnology and biomedical research.</p
Web platform using digital image processing and geographic information system tools: a Brazilian case study on dengue
FASIMU: flexible software for flux-balance computation series in large metabolic networks
<p>Abstract</p> <p>Background</p> <p>Flux-balance analysis based on linear optimization is widely used to compute metabolic fluxes in large metabolic networks and gains increasingly importance in network curation and structural analysis. Thus, a computational tool flexible enough to realize a wide variety of FBA algorithms and able to handle batch series of flux-balance optimizations is of great benefit.</p> <p>Results</p> <p>We present FASIMU, a command line oriented software for the computation of flux distributions using a variety of the most common FBA algorithms, including the first available implementation of (i) weighted flux minimization, (ii) fitness maximization for partially inhibited enzymes, and (iii) of the concentration-based thermodynamic feasibility constraint. It allows batch computation with varying objectives and constraints suited for network pruning, leak analysis, flux-variability analysis, and systematic probing of metabolic objectives for network curation. Input and output supports SBML. FASIMU can work with free (lp_solve and GLPK) or commercial solvers (CPLEX, LINDO). A new plugin (faBiNA) for BiNA allows to conveniently visualize calculated flux distributions. The platform-independent program is an open-source project, freely available under GNU public license at <url>http://www.bioinformatics.org/fasimu</url> including manual, tutorial, and plugins.</p> <p>Conclusions</p> <p>We present a flux-balance optimization program whose main merits are the implementation of thermodynamics as a constraint, batch series of computations, free availability of sources, choice on various external solvers, and the flexibility on metabolic objectives and constraints.</p
A Synthetic Adjuvant to Enhance and Expand Immune Responses to Influenza Vaccines
Safe, effective adjuvants that enhance vaccine potency, including induction of neutralizing Abs against a broad range of variant strains, is an important strategy for the development of seasonal influenza vaccines which can provide optimal protection, even during seasons when available vaccines are not well matched to circulating viruses. We investigated the safety and ability of Glucopyranosyl Lipid Adjuvant-Stable Emulsion (GLA-SE), a synthetic Toll-like receptor (TLR)4 agonist formulation, to adjuvant Fluzone® in mice and non-human primates. The GLA-SE adjuvanted Fluzone vaccine caused no adverse reactions, increased the induction of T helper type 1 (TH1)-biased cytokines such as IFNγ, TNF and IL-2, and broadened serological responses against drifted A/H1N1 and A/H3N2 influenza variants. These results suggest that synthetic TLR4 adjuvants can enhance the magnitude and quality of protective immunity induced by influenza vaccines
- …
