183 research outputs found
A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.
This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H
Pitfalls of predicting complex traits from SNPs
The success of genome-wide association studies (GWASs) has led to increasing interest in making predictions of complex trait phenotypes, including disease, from genotype data. Rigorous assessment of the value of predictors is crucial before implementation. Here we discuss some of the limitations and pitfalls of prediction analysis and show how naive implementations can lead to severe bias and misinterpretation of results
Consensus-based antimicrobial resistance and stewardship competencies for UK undergraduate medical students.
BACKGROUND: In the UK there is limited coverage of antimicrobial stewardship across postgraduate curricula and evidence that final year medical students have insufficient and inconsistent antimicrobial stewardship teaching. A national undergraduate curriculum for antimicrobial resistance and stewardship is required to standardize an adequate level of understanding for all future doctors. OBJECTIVES: To provide a UK national consensus on competencies for antimicrobial resistance and stewardship for undergraduate medical education. METHODS: Using the modified Delphi method over two online survey rounds, an expert panel comprising leads for infection teaching from 25 UK medical schools reviewed competency descriptors for antimicrobial resistance and stewardship education. RESULTS: There was a response rate of 100% with all 28 experts who agreed to take part completing both survey rounds. Following the first-round survey, of the initial 55 descriptors, 43 reached consensus (78%). The second-round survey included the 12 descriptors from the first round in which agreement had not been reached, four amended descriptors and 12 new descriptors following qualitative feedback from the panel members. Following the second-round survey, a total of 58 consensus-based competency descriptors within six overarching domains were identified. CONCLUSIONS: The consensus-based competency descriptors defined here can be used to inform standards, design curricula, develop assessment tools and direct UK undergraduate medical education
The influence of interdental spacing on the detection of proximal caries lesions in primary teeth
A Value-Based Medicine cost-utility analysis of genetic testing for neovascular macular degeneration
Effector Memory Th1 CD4 T Cells Are Maintained in a Mouse Model of Chronic Malaria
Protection against malaria often decays in the absence of infection, suggesting that protective immunological memory depends on stimulation. Here we have used CD4+ T cells from a transgenic mouse carrying a T cell receptor specific for a malaria protein, Merozoite Surface Protein-1, to investigate memory in a Plasmodium chabaudi infection. CD4+ memory T cells (CD44hiIL-7Rα+) developed during the chronic infection, and were readily distinguishable from effector (CD62LloIL-7Rα−) cells in acute infection. On the basis of cell surface phenotype, we classified memory CD4+ T cells into three subsets: central memory, and early and late effector memory cells, and found that early effector memory cells (CD62LloCD27+) dominated the chronic infection. We demonstrate a linear pathway of differentiation from central memory to early and then late effector memory cells. In adoptive transfer, CD44hi memory cells from chronically infected mice were more effective at delaying and reducing parasitemia and pathology than memory cells from drug-treated mice without chronic infection, and contained a greater proportion of effector cells producing IFN-γ and TNFα, which may have contributed to the enhanced protection. These findings may explain the observation that in humans with chronic malaria, activated effector memory cells are best maintained in conditions of repeated exposure
In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography
Development of hypoxia-targeted therapies has stimulated the search for clinically applicable noninvasive markers of tumour hypoxia. Here, we describe the validation of [18F]fluoroetanidazole ([18F]FETA) as a tumour hypoxia marker by positron emission tomography (PET). Cellular transport and retention of [18F]FETA were determined in vitro under air vs nitrogen. Biodistribution and metabolism of the radiotracer were determined in mice bearing MCF-7, RIF-1, EMT6, HT1080/26.6, and HT1080/1-3C xenografts. Dynamic PET imaging was performed on a dedicated small animal scanner. [18F]FETA, with an octanol–water partition coefficient of 0.16±0.01, was selectively retained by RIF-1 cells under hypoxia compared to air (3.4- to 4.3-fold at 60–120 min). The radiotracer was stable in the plasma and distributed well to all the tissues studied. The 60-min tumour/muscle ratios positively correlated with the percentage of pO2 values <5 mmHg (r=0.805, P=0.027) and carbogen breathing decreased [18F]FETA-derived radioactivity levels (P=0.028). In contrast, nitroreductase activity did not influence accumulation. Tumours were sufficiently visualised by PET imaging within 30–60 min. Higher fractional retention of [18F]FETA in HT1080/1-3C vs HT1080/26.6 tumours determined by dynamic PET imaging (P=0.05) reflected higher percentage of pO2 values <1 mmHg (P=0.023), lower vessel density (P=0.026), and higher radiobiological hypoxic fraction (P=0.008) of the HT1080/1-3C tumours. In conclusion, [18F]FETA shows hypoxia-dependent tumour retention and is, thus, a promising PET marker that warrants clinical evaluation
Integrated Proteomic and Metabolomic Analysis of an Artificial Microbial Community for Two-Step Production of Vitamin C
An artificial microbial community consisted of Ketogulonicigenium vulgare and Bacillus megaterium has been used in industry to produce 2-keto-gulonic acid (2-KGA), the precursor of vitamin C. During the mix culture fermentation process, sporulation and cell lysis of B. megaterium can be observed. In order to investigate how these phenomena correlate with 2-KGA production, and to explore how two species interact with each other during the fermentation process, an integrated time-series proteomic and metabolomic analysis was applied to the system. The study quantitatively identified approximate 100 metabolites and 258 proteins. Principal Component Analysis of all the metabolites identified showed that glutamic acid, 5-oxo-proline, L-sorbose, 2-KGA, 2, 6-dipicolinic acid and tyrosine were potential biomarkers to distinguish the different time-series samples. Interestingly, most of these metabolites were closely correlated with the sporulation process of B. megaterium. Together with several sporulation-relevant proteins identified, the results pointed to the possibility that Bacillus sporulation process might be important part of the microbial interaction. After sporulation, cell lysis of B. megaterium was observed in the co-culture system. The proteomic results showed that proteins combating against intracellular reactive oxygen stress (ROS), and proteins involved in pentose phosphate pathway, L-sorbose pathway, tricarboxylic acid cycle and amino acids metabolism were up-regulated when the cell lysis of B. megaterium occurred. The cell lysis might supply purine substrates needed for K. vulgare growth. These discoveries showed B. megaterium provided key elements necessary for K. vulgare to grow better and produce more 2-KGA. The study represents the first attempt to decipher 2-KGA-producing microbial communities using quantitative systems biology analysis
Recommended from our members
Clinical standards for drug-susceptible TB in children and adolescents.
BACKGROUND: These clinical standards aim to provide guidance for diagnosis, treatment, and management of drug-susceptible TB in children and adolescents.METHODS: Fifty-two global experts in paediatric TB participated in a Delphi consensus process. After eight rounds of revisions, 51/52 (98%) participants endorsed the final document.RESULTS: Eight standards were identified: Standard 1, Age and developmental stage are critical considerations in the assessment and management of TB; Standard 2, Children and adolescents with symptoms and signs of TB disease should undergo prompt evaluation, and diagnosis and treatment initiation should not depend on microbiological confirmation; Standard 3, Treatment initiation is particularly urgent in children and adolescents with presumptive TB meningitis and disseminated (miliary) TB; Standard 4, Children and adolescents should be treated with an appropriate weight-based regimen; Standard 5, Treating TB infection (TBI) is important to prevent disease; Standard 6, Children and adolescents should receive home-based/community-based treatment support whenever possible; Standard 7, Children, adolescents, and their families should be provided age-appropriate support to optimise engagement in care and clinical outcomes; and Standard 8, Case reporting and contact tracing should be conducted for each child and adolescent.CONCLUSION: These consensus-based clinical standards, which should be adapted to local contexts, will improve the care of children and adolescents affected by TB
Where It’s at Really Matters: In Situ In Vivo Vascular Endothelial Growth Factor Spatially Correlates with Electron Paramagnetic Resonance pO2 Images in Tumors of Living Mice
Purpose: Tumor microenvironments show remarkable tumor pO_{2} heterogeneity, as seen in prior EPR pO_{2} images (EPROI). pO_{2} correlation with hypoxia response proteins is frustrated by large rapid pO2 changes with position.
Procedures: To overcome this limitation, biopsies stereotactically located in the EPROI were used to explore the relationship between vascular endothelial growth factor A (VEGF) concentrations in living mouse tumors and the local EPROI pO_{2}.
Results: Quantitative ELISA VEGF concentrations correlated (p = 0.0068 to 0.019) with mean pO_{2}, median pO_{2}, and the fraction of voxels in the biopsy volume with pO_{2} less than 3, 6, and 10 Torr.
Conclusions: This validates EPROI hypoxic fractions at the molecular level and provides a new paradigm for the assessment of the relationship, in vivo, between hypoxia and hypoxia response proteins. When translated to human subjects, this will enhance understanding of human tumor pathophysiology and cancer response to therapy
- …
