516 research outputs found
Fat Mass and Obesity-Associated Gene (FTO) in Eating Disorders: Evidence for Association of the rs9939609 Obesity Risk Allele with Bulimia nervosa and Anorexia nervosa
Objective: The common single nucleotide polymorphism (SNP) rs9939609 in the fat mass and obesity-associated gene (FTO) is associated with obesity. As genetic variants associated with weight regulation might also be implicated in the etiology of eating disorders, we evaluated whether SNP rs9939609 is associated with bulimia nervosa (BN) and anorexia nervosa (AN). Methods: Association of rs9939609 with BN and AN was assessed in 689 patients with AN, 477 patients with BN, 984 healthy non-population-based controls, and 3,951 population-based controls (KORA-S4). Based on the familial and premorbid occurrence of obesity in patients with BN, we hypothesized an association of the obesity risk A-allele with BN. Results: In accordance with our hypothesis, we observed evidence for association of the rs9939609 A-allele with BN when compared to the non-population-based controls (unadjusted odds ratio (OR) = 1.142, one-sided 95% confidence interval (CI) 1.001-infinity; one-sided p = 0.049) and a trend in the population-based controls (OR = 1.124, one-sided 95% CI 0.932-infinity; one-sided p = 0.056). Interestingly, compared to both control groups, we further detected a nominal association of the rs9939609 A-allele to AN (OR = 1.181, 95% CI 1.027-1.359, two-sided p = 0.020 or OR = 1.673, 95% CI 1.101-2.541, two-sided p = 0.015,). Conclusion: Our data suggest that the obesity-predisposing FTO allele might be relevant in both AN and BN. Copyright (C) 2012 S. Karger GmbH, Freibur
A bacterial glycan core linked to surface (S)-layer proteins modulates host immunity through Th17 suppression
Tannerella forsythia is a pathogen implicated in periodontitis, an inflammatory disease of the tooth-supporting tissues often leading to tooth loss. This key periodontal pathogen is decorated with a unique glycan core O-glycosidically linked to the bacterium's proteinaceous surface (S)-layer lattice and other glycoproteins. Herein, we show that the terminal motif of this glycan core acts to modulate dendritic cell effector functions to suppress T-helper (Th)17 responses. In contrast to the wild-type bacterial strain, infection with a mutant strain lacking the complete S-layer glycan core induced robust Th17 and reduced periodontal bone loss in mice. Our findings demonstrate that surface glycosylation of this pathogen may act to ensure its persistence in the host likely through suppression of Th17 responses. In addition, our data suggest that the bacterium then induces the Toll-like receptor 2–Th2 inflammatory axis that has previously been shown to cause bone destruction. Our study provides a biological basis for pathogenesis and opens opportunities in exploiting bacterial glycans as therapeutic targets against periodontitis and a range of other infectious diseases
Benzedeiras em Mircea Eliade, uma aproximação possível
The purpose of this paper is to investigate the possible applicability of the theory of Mircea Eliade, Images and Symbols in the books and the sacred and the profane in relation to the case of healers. Eliade as a researcher and historian of religions, investigated various topics within this approach, so that when dealing with primitive religions and primal myths the two works mentioned, goes a corollary enabling better understand this ancient practice that is the benzição as well as figure of their proponents. The methodology used is that of revisionary interpretative analysis.A proposta deste artigo é investigar a possível aplicabilidade da teoria de Mircea Eliade, contida nos livros Imagens e símbolos e O sagrado e o profano em relação ao caso das benzedeiras. Eliade, enquanto pesquisador e historiador das religiões, investigou diversos temas dentro desse enfoque, de modo que, ao tratar de religiões primitivas e mitos primordiais nas duas obras apontadas, percorre um corolário que permite entender melhor essa prática milenar que é a da benzeção, bem como a figura de suas proponentes. A metodologia empregada é a da análise revisional interpretativa
Loss-of-function mutations in SLC30A8 protect against type 2 diabetes.
Neðst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinn View/OpenLoss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ~150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (-0.17 s.d., P = 4.6 × 10(-4)). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.US National Institutes of Health (NIH) Training
5-T32-GM007748-33
Doris Duke Charitable Foundation
2006087
Fulbright Diabetes UK Fellowship
BDA 11/0004348
Broad Institute from Pfizer, Inc.
NIH
U01 DK085501
U01 DK085524
U01 DK085545
U01 DK085584
Swedish Research Council
Dnr 521-2010-3490
Dnr 349-2006-237
European Research Council (ERC)
GENETARGET T2D
GA269045
ENGAGE
2007-201413
CEED3
2008-223211
Sigrid Juselius Foundation
Folkh lsan Research Foundation
ERC
AdG 293574
Research Council of Norway
197064/V50
KG Jebsen Foundation
University of Bergen
Western Norway Health Authority
Lundbeck Foundation
Novo Nordisk Foundation
Wellcome Trust
WT098017
WT064890
WT090532
WT090367
WT098381
Uppsala University
Swedish Research Council and the Swedish Heart- Lung Foundation
Academy of Finland
124243
102318
123885
139635
Finnish Heart Foundation
Finnish Diabetes Foundation, Tekes
1510/31/06
Commission of the European Community
HEALTH-F2-2007-201681
Ministry of Education and Culture of Finland
European Commission Framework Programme 6 Integrated Project
LSHM-CT-2004-005272
City of Kuopio and Social Insurance Institution of Finland
Finnish Foundation for Cardiovascular Disease
NIH/NIDDK
U01-DK085545
National Heart, Lung, and Blood Institute (NHLBI)
National Institute on Minority Health and Health Disparities
N01 HC-95170
N01 HC-95171
N01 HC-95172
European Union Seventh Framework Programme, DIAPREPP
Swedish Child Diabetes Foundation (Barndiabetesfonden)
5U01DK085526
DK088389
U54HG003067
R01DK072193
R01DK062370
Z01HG000024info:eu-repo/grantAgreement/EC/FP7/20201
Recommended from our members
Indian summer monsoon onset forecast skill in the UK Met Office initialized coupled seasonal forecasting system (GloSea5-GC2)
Accurate and precise forecasting of the Indian monsoon is important for the socio-economic security of India, with improvements in agriculture and associated sectors from prediction of the monsoon onset. In this study we establish the skill of the UK Met Office coupled initialized global seasonal forecasting system, GloSea5-GC2, in forecasting Indian monsoon onset. We build on previous work that has demonstrated the good skill of GloSea5 at forecasting interannual variations of the seasonal mean Indian monsoon using measures of large-scale circulation and local precipitation. We analyze the summer hindcasts from a set of three springtime start-dates in late April/early May for the 20-year hindcast period (1992-2011). The hindcast set features at least fifteen ensemble members for each year and is analyzed using five different objective monsoon indices. These indices are designed to examine large and local-scale measures of the monsoon circulation, hydrological changes, tropospheric temperature gradient, or rainfall for single value (area-averaged) or grid-point measures of the Indian monsoon onset. There is significant correlation between onset dates in the model and those found in reanalysis. Indices based on large-scale dynamic and thermodynamic indices are better at estimating monsoon onset in the model rather than local-scale dynamical and hydrological indices. This can be attributed to the model's better representation of large-scale dynamics compared to local-scale features. GloSea5 may not be able to predict the exact date of monsoon onset over India, but this study shows that the model has a good ability at predicting category-wise monsoon onset, using early, normal or late tercile categories. Using a grid-point local rainfall onset index, we note that the forecast skill is highest over parts of central India, the Gangetic plains, and parts of coastal India - all zones of extensive agriculture in India. El Niño Southern Oscillation (ENSO) forcing in the model improves the forecast skill of monsoon onset when using a large-scale circulation index, with late monsoon onset coinciding with El Niño conditions and early monsoon onset more common in La Niña years. The results of this study suggest that GloSea5's ensemble-mean forecast may be used for reliable Indian monsoon onset prediction a month in advance despite systematic model errors
Operation and performance of the ATLAS Tile Calorimeter in Run 1
The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8TeV with a total integrated luminosity of nearly 30 fb−1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report
PAMAM dendrimers: blood-brain barrier transport and neuronal uptake after focal brain ischemia
Drug delivery to the central nervous system is restricted by the blood-brain barrier (BBB). However, with the onset of stroke, the BBB becomes leaky, providing a window of opportunity to passively target the brain. Here, cationic poly(amido amine) (PAMAM) dendrimers of different generations were functionalized with poly(ethylene glycol) (PEG) to reduce cytotoxicity and prolong blood circulation half-life, aiming for a safe in vivo drug delivery system in a stroke scenario. Rhodamine B isothiocyanate (RITC) was covalently tethered to the dendrimer backbone and used as a small surrogate drug as well as for tracking purposes. The biocompatibility of PAMAM was markedly increased by PEGylation as a function of dendrimer generation and degree of functionalization. The PEGylated RITC-modified dendrimers did not affect the integrity of an in vitro BBB model. Additionally, the functionalized dendrimers remained safe when in contact with the bEnd.3 cells and rat primary astrocytes composing the in vitro BBB model after hypoxia induced by oxygen-glucose deprivation. Modification with PEG also decreased the interaction and uptake by endothelial cells of PAMAM, indicating that the transport across a leaky BBB due to focal brain ischemia would be facilitated. Next, the functionalized dendrimers were tested in contact with red blood cells showing no haemolysis for the PEGylated PAMAM, in contrast to the unmodified dendrimer. Interestingly, the PEG-modified dendrimers reduced blood clotting, which may be an added beneficial function in the context of stroke. The optimized PAMAM formulation was intravenously administered in mice after inducing permanent focal brain ischemia. Twenty-four hours after administration, dendrimers could be detected in the brain, including in neurons of the ischemic cortex. Our results suggest that the proposed formulation has the potential for becoming a successful delivery vector for therapeutic application to the injured brain after stroke reaching the ischemic neurons.The authors acknowledge the financial support of the Fundo para a Investigação em Saúde (INFARMED, project reference FIS-2015-01_CCV_20150630-88), as well as the FEDER funds (NORTE-01-0145-FEDER-000008) through the Programa Operacional Competitividade e Internacionalização - COMPETE 2020 and the Portuguese funds through FCT – Fundação para a Ciência e a Tecnologia in the frame of the projects (PTDC/CTM-NAN/112428/2009 and PTDC/CTM-NAN/3547/2014). Acknowledgements are also due to FCT by the grant PEst-OE/QUI/UI0674/2013 (CQM, Portuguese government). Funding through the project Centro de Química da Madeira – CQM + (M1420-01-0145-FEDER-000005, ARDITI) by Madeira Regional Operational Programme (Madeira 1420) is also acknowledged. S.D. Santos acknowledges the support by FCT for the post-doctoral fellowship (SFRH/BPD/109297/2015). V. Leiro acknowledges the support by the project NORTE-01-0145-FEDER-000012, financed by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The authors would also like to acknowledge Frederico Silva (Biochemical and Biophysical Technologies – b2Tech) Rui Fernandes (Histology and Electron Microscopy - HEMS), Sofia Lamas (i3S Animal Facility), Paula Magalhães (Cell Culture and Genotyping - CCGen) and Maria Lazaro (Bioimaging) for the support at i3S Scientific Platforms. The authors acknowledge Centro de Materiais da Universidade do Porto (CEMUP) for NMR analysis. Appendix
Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing
Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (~1.5–5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.National Institutes of Health (U.S.) (Intramural Research Program)National Human Genome Research Institute (U.S.)Charles University (program UNCE 204011)Charles University (program PRVOUK-P24/LF1/3)Czech Republic. Ministry of Education, Youth, and Sports (grant NT13116-4/2012)Czech Republic. Ministry of Health (grant NT13116-4/2012)Czech Republic. Ministry of Health (grant LH12015)National Institutes of Health (U.S.) (Harvard Digestive Diseases Center, grant DK34854
Investing in Onchocerciasis Control: Financial Management of the African Programme for Onchocerciasis Control (APOC).
- …
