450 research outputs found
Grover's algorithm on a Feynman computer
We present an implementation of Grover's algorithm in the framework of
Feynman's cursor model of a quantum computer. The cursor degrees of freedom act
as a quantum clocking mechanism, and allow Grover's algorithm to be performed
using a single, time-independent Hamiltonian. We examine issues of locality and
resource usage in implementing such a Hamiltonian. In the familiar language of
Heisenberg spin-spin coupling, the clocking mechanism appears as an excitation
of a basically linear chain of spins, with occasional controlled jumps that
allow for motion on a planar graph: in this sense our model implements the idea
of "timing" a quantum algorithm using a continuous-time random walk. In this
context we examine some consequences of the entanglement between the states of
the input/output register and the states of the quantum clock
The topology of a discussion: the #occupy case
We analyse a large sample of the Twitter activity developed around the social
movement 'Occupy Wall Street' to study the complex interactions between the
human communication activity and the semantic content of a discussion. We use a
network approach based on the analysis of the bipartite graph @Users-#Hashtags
and of its projections: the 'semantic network', whose nodes are hashtags, and
the 'users interest network', whose nodes are users In the first instance, we
find out that discussion topics (#hashtags) present a high heterogeneity, with
the distinct role of the communication hubs where most the 'opinion traffic'
passes through. In the second case, the self-organization process of users
activity leads to the emergence of two classes of communicators: the
'professionals' and the 'amateurs'. Moreover the network presents a strong
community structure, based on the differentiation of the semantic topics, and a
high level of structural robustness when a certain set of topics are censored
and/or accounts are removed. Analysing the characteristics the @Users-#Hashtags
network we can distinguish three phases of the discussion about the movement.
Each phase corresponds to specific moment of the movement: from declaration of
intent, organisation and development and the final phase of political
reactions. Each phase is characterised by the presence of specific #hashtags in
the discussion. Keywords: Twitter, Network analysisComment: 13 pages, 9 figure
A new large N phase transition in YM2
Inspired by the interpretation of two dimensional Yang-Mills theory on a
cylinder as a random walk on the gauge group, we point out the existence of a
large N transition which is the gauge theory analogue of the cutoff transition
in random walks. The transition occurs in the strong coupling region, with the
't Hooft coupling scaling as alpha*log(N), at a critical value of alpha (alpha
= 4 on the sphere). The two phases below and above the transition are studied
in detail. The effective number of degrees of freedom and the free energy are
found to be proportional to N^(2-alpha/2) below the transition and to vanish
altogether above it. The expectation value of a Wilson loop is calculated to
the leading order and found to coincide in both phases with the strong coupling
value.Comment: 23 pages, 3 figure
Speed and entropy of an interacting continuous time quantum walk
We present some dynamic and entropic considerations about the evolution of a
continuous time quantum walk implementing the clock of an autonomous machine.
On a simple model, we study in quite explicit terms the Lindblad evolution of
the clocked subsystem, relating the evolution of its entropy to the spreading
of the wave packet of the clock. We explore possible ways of reducing the
generation of entropy in the clocked subsystem, as it amounts to a deficit in
the probability of finding the target state of the computation. We are thus
lead to examine the benefits of abandoning some classical prejudice about how a
clocking mechanism should operate.Comment: 25 pages, 14 figure
Quantum Annealing and Analog Quantum Computation
We review here the recent success in quantum annealing, i.e., optimization of
the cost or energy functions of complex systems utilizing quantum fluctuations.
The concept is introduced in successive steps through the studies of mapping of
such computationally hard problems to the classical spin glass problems. The
quantum spin glass problems arise with the introduction of quantum
fluctuations, and the annealing behavior of the systems as these fluctuations
are reduced slowly to zero. This provides a general framework for realizing
analog quantum computation.Comment: 22 pages, 7 figs (color online); new References Added. Reviews of
Modern Physics (in press
The power of quantum systems on a line
We study the computational strength of quantum particles (each of finite
dimensionality) arranged on a line. First, we prove that it is possible to
perform universal adiabatic quantum computation using a one-dimensional quantum
system (with 9 states per particle). This might have practical implications for
experimentalists interested in constructing an adiabatic quantum computer.
Building on the same construction, but with some additional technical effort
and 12 states per particle, we show that the problem of approximating the
ground state energy of a system composed of a line of quantum particles is
QMA-complete; QMA is a quantum analogue of NP. This is in striking contrast to
the fact that the analogous classical problem, namely, one-dimensional
MAX-2-SAT with nearest neighbor constraints, is in P. The proof of the
QMA-completeness result requires an additional idea beyond the usual techniques
in the area: Not all illegal configurations can be ruled out by local checks,
so instead we rule out such illegal configurations because they would, in the
future, evolve into a state which can be seen locally to be illegal. Our
construction implies (assuming the quantum Church-Turing thesis and that
quantum computers cannot efficiently solve QMA-complete problems) that there
are one-dimensional systems which take an exponential time to relax to their
ground states at any temperature, making them candidates for being
one-dimensional spin glasses.Comment: 21 pages. v2 has numerous corrections and clarifications, and most
importantly a new author, merged from arXiv:0705.4067. v3 is the published
version, with additional clarifications, publisher's version available at
http://www.springerlink.co
Line graphs as social networks
The line graphs are clustered and assortative. They share these topological
features with some social networks. We argue that this similarity reveals the
cliquey character of the social networks. In the model proposed here, a social
network is the line graph of an initial network of families, communities,
interest groups, school classes and small companies. These groups play the role
of nodes, and individuals are represented by links between these nodes. The
picture is supported by the data on the LiveJournal network of about 8 x 10^6
people. In particular, sharp maxima of the observed data of the degree
dependence of the clustering coefficient C(k) are associated with cliques in
the social network.Comment: 11 pages, 4 figure
Oleate but not stearate induces the regulatory phenotype of myeloid suppressor cells
Tumor infiltrating myeloid cells play contradictory roles in the tumor
development. Dendritic cells and classical activated macrophages support anti-
tumor immune activity via antigen presentation and induction of pro-
inflammatory immune responses. Myeloid suppressor cells (MSCs), for instance
myeloid derived suppressor cells (MDSCs) or tumor associated macrophages play
a critical role in tumor growth. Here, treatment with sodium oleate, an
unsaturated fatty acid, induced a regulatory phenotype in the myeloid
suppressor cell line MSC-2 and resulted in an increased suppression of
activated T cells, paralleled by increased intracellular lipid droplets
formation. Furthermore, sodium oleate potentiated nitric oxide (NO) production
in MSC-2, thereby increasing their suppressive capacity. In primary polarized
bone marrow cells, sodium oleate (C18:1) and linoleate (C18:2), but not
stearate (C18:0) were identified as potent FFA to induce a regulatory
phenotype. This effect was abrogated in MSC-2 as well as primary cells by
specific inhibition of droplets formation while the inhibition of de novo FFA
synthesis proved ineffective, suggesting a critical role for exogenous FFA in
the functional induction of MSCs. Taken together our data introduce a new
unsaturated fatty acid-dependent pathway shaping the functional phenotype of
MSCs, facilitating the tumor escape from the immune system
Simultaneous Learning of Fuzzy Sets
We extend a procedure based on support vector clustering and devoted to inferring the membership function of a fuzzy set to the case of a universe of discourse over which several fuzzy sets are defined. The extended approach learns simultaneously these sets without requiring as previous knowledge either their number or labels approximating membership values. This data-driven approach is completed via expert knowledge incorporation in the form of predefined shapes for the membership functions. The procedure is successfully tested on a benchmark
Differential expression of DHHC9 in microsatellite stable and instable human colorectal cancer subgroups
Microarray analysis on pooled samples has previously identified ZDHHC9 (DHHC9) to be upregulated in colon adenocarcinoma compared to normal colon mucosa. Analyses of 168 samples from proximal and distal adenocarcinomas using U133plus2.0 microarrays validated these findings, showing a significant two-fold (log 2) upregulation of DHHC9 transcript (P<10(−6)). The upregulation was more striking in microsatellite stable (MSS), than in microsatellite instable (MSI), tumours. Genes known to interact with DHHC9 as H-Ras or N-Ras did not show expression differences between MSS and MSI. Immunohistochemical analysis was performed on 60 colon adenocarcinomas, previously analysed on microarrays, as well as on tissue microarrays with 40 stage I–IV tumours and 46 tumours from different organ sites. DHHC9 protein was strongly expressed in MSS compared to MSI tumours, readily detectable in premalignant lesions, compared to the rare expression seen in normal mucosa. DHHC9 was specific for tumours of the gastrointestinal tract and localised to the Golgi apparatus, in vitro and in vivo. Overexpression of DHHC9 decreased the proliferation of SW480 and CaCo2 MSS cell lines significantly. In conclusion, DHHC9 is a gastrointestinal-related protein highly expressed in MSS colon tumours. The palmitoyl transferase activity, modifying N-Ras and H-Ras, suggests DHHC9 as a target for anticancer drug design
- …
