200 research outputs found
High Brain Ammonia Tolerance and Down-Regulation of Na+:K+:2Cl- Cotransporter 1b mRNA and Protein Expression in the Brain of the Swamp Eel, Monopterus albus, Exposed to Environmental Ammonia or Terrestrial Conditions
10.1371/journal.pone.0069512PLoS ONE89-POLN
Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis
The glutamatergic and dopaminergic systems are thought to be involved in the pathophysiology of schizophrenia. Their interaction has been widely documented and may have a role in the neurobiological basis of the disease. The aim of this study was to compare, using proton magnetic resonance spectroscopy (1H-MRS), glutamate levels in the precommissural dorsal-caudate (a dopamine-rich region) and the cerebellar cortex (negligible for dopamine) in the following: (1) 18 antipsychotic-naïve subjects with prodromal symptoms and considered to be at ultra high-risk for schizophrenia (UHR), (2) 18 antipsychotic-naïve first- episode psychosis patients (FEP), and (3) 40 age- and sex- matched healthy controls. All subjects underwent a 1H-MRS study using a 3Tesla scanner. Glutamate levels were quantified and corrected for the proportion of cerebrospinal fluid and percentage of gray matter in the voxel. The UHR and FEP groups showed higher levels of glutamate than controls, without differences between UHR and FEP. In the cerebellum, no differences were seen between the three groups. The higher glutamate level in the precommissural dorsal-caudate and not in the cerebellum of UHR and FEP suggests that a high glutamate level (a) precedes the onset of schizophrenia, and (b) is present in a dopamine-rich region previously implicated in the pathophysiology of schizophrenia.peer-reviewe
Perspectives and Integration in SOLAS Science
Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm.
Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency.
The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling.
Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter
Properties and expression of Na+/K+-ATPase α-subunit isoforms in the brain of the swamp eel, Monopterus albus, which has unusually high brain ammonia tolerance
10.1371/journal.pone.0084298PLoS ONE812-POLN
Molecular pathogenicity of 1-nonadecene and l-lactic acid, unique metabolites in radicular cysts and periapical granulomas
Recently, 1-nonadecene and l-lactic acid were identified as unique metabolites in radicular cysts and periapical granuloma, respectively. However, the biological roles of these metabolites were unknown. Therefore, we aimed to investigate the inflammatory and mesenchymal-epithelial transition (MET) effects of 1-nonadecene, and the inflammatory and collagen precipitation effects of l-lactic acid on both periodontal ligament fibroblasts (PdLFs) and peripheral blood mononuclear cells (PBMCs). PdLFs and PBMCs were treated with 1-nonadecene and l-lactic acid. Cytokines’ expression was measured using quantitative real-time polymerase chain reaction (qRT-PCR). E-cadherin, N-cadherin, and macrophage polarization markers were measured using flow cytometry. The collagen, matrix metalloproteinase (MMP)-1, and released cytokines were measured using collagen assay, western blot, and Luminex assay, respectively. In PdLFs, 1-nonadecene enhances inflammation through the upregulation of some inflammatory cytokines including IL-1β, IL-6, IL-12A, monocyte chemoattractant protein (MCP)-1, and platelet-derived growth factor (PDGF) α. 1-Nonadecene also induced MET through the upregulation of E-cadherin and the downregulation of N-cadherin in PdLFs. 1-Nonadecene polarized macrophages to a pro-inflammatory phenotype and suppressed their cytokines’ release. l-lactic acid exerted a differential impact on the inflammation and proliferation markers. Intriguingly, l-lactic acid induced fibrosis-like effects by enhancing collagen synthesis, while inhibiting MMP-1 release in PdLFs. These results provide a deeper understanding of 1-nonadecene and l-lactic acid’s roles in modulating the microenvironment of the periapical area. Consequently, further clinical investigation can be employed for target therapy
A Subset of Latency-Reversing Agents Expose HIV-Infected Resting CD4⁺ T-Cells to Recognition by Cytotoxic T-Lymphocytes
Resting CD4⁺ T-cells harboring inducible HIV proviruses are a critical reservoir in antiretroviral therapy (ART)-treated subjects. These cells express little to no viral protein, and thus neither die by viral cytopathic effects, nor are efficiently cleared by immune effectors. Elimination of this reservoir is theoretically possible by combining latency-reversing agents (LRAs) with immune effectors, such as CD8⁺ T-cells. However, the relative efficacy of different LRAs in sensitizing latently-infected cells for recognition by HIV-specific CD8⁺ T-cells has not been determined. To address this, we developed an assay that utilizes HIV-specific CD8⁺ T-cell clones as biosensors for HIV antigen expression. By testing multiple CD8⁺ T-cell clones against a primary cell model of HIV latency, we identified several single agents that primed latently-infected cells for CD8⁺ T-cell recognition, including IL-2, IL-15, two IL-15 superagonists (IL-15SA and ALT-803), prostratin, and the TLR-2 ligand Pam₃CSK₄. In contrast, we did not observe CD8⁺ T-cell recognition of target cells following treatment with histone deacetylase inhibitors or with hexamethylene bisacetamide (HMBA). In further experiments we demonstrate that a clinically achievable concentration of the IL-15 superagonist ‘ALT-803’, an agent presently in clinical trials for solid and hematological tumors, primes the natural ex vivo reservoir for CD8⁺ T-cell recognition. Thus, our results establish a novel experimental approach for comparative evaluation of LRAs, and highlight ALT-803 as an LRA with the potential to synergize with CD8⁺ T-cells in HIV eradication strategies.United States. National Institutes of Health (AI111860
Focal Cerebral Magnetic Resonance Changes Associated with Partial Status Epilepticus
We report 2 patients with transient abnormalities on magnetic resonance imaging (MRI) associated with partial status epilepticus (SE). A man with a 4-month history of partial seizures had complex partial SE for 9 days, with left temporal maximum on ictal EEG. Left temporal lobe T 2 signal was increased on MRI during SE, but cerebral MRI was normal 9 weeks later. A woman with “cryptogenic” temporal lobe epilepsy for 16 years had complex partial SE for 1 week, with right temporal maximum on ictal EEG. T 2 Signal was increased over the entire right temporal lobe, extending into the insula, without mass effect, on MRI 1 month after SE ended. Repeat MRI 1 month later showed marked decrease in volume of increased T 2 intensity, without gadolinium enhancement, but with mild mass effect over the right anteroinferomesial temporal areas. A gemistocytic astrocytoma was resected. Focal cerebral MRI abnormalities consistent with cerebral edema may be due to partial SE but also may indicate underlying glioma, even in long-standing partial epilepsy. Focal structural imaging changes consistent with neoplasm should be followed to full resolution after partial SE.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65221/1/j.1528-1157.1994.tb02909.x.pd
Surgical attenuation of spontaneous congenital portosystemic shunts in dogs resolves hepatic encephalopathy but not hypermanganesemia
Hypermanganesemia is commonly recognized in human patients with hepatic insufficiency and portosystemic shunting. Since manganese is neurotoxic, increases in brain manganese concentrations have been implicated in the development of hepatic encephalopathy although a direct causative role has yet to be demonstrated. Evaluate manganese concentrations in dogs with a naturally occurring congenital shunt before and after attenuation as well as longitudinally following the changes in hepatic encephalopathy grade. Our study demonstrated that attenuation of the shunt resolved encephalopathy, significantly reduced postprandial bile acids, yet a hypermanganasemic state persisted. This study demonstrates that resolution of hepatic encephalopathy can occur without the correction of hypermanganesemia, indicating that increased manganese concentrations alone do not play a causative role in encephalopathy. Our study further demonstrates the value of the canine congenital portosystemic shunt as a naturally occurring spontaneous model of human hepatic encephalopathy.</p
Early resuscitation of dengue shock syndrome in children with hyperosmolar sodium-lactate: a randomized single-blind clinical trial of efficacy and safety
More Accurate Insight into the Incidence of Human Rabies in Developing Countries through Validated Laboratory Techniques
International audienceNo abstract availabl
- …
