892 research outputs found
Finite temperature calculations for the bulk properties of strange star using a many-body approach
We have considered a hot strange star matter, just after the collapse of a
supernova, as a composition of strange, up and down quarks to calculate the
bulk properties of this system at finite temperature with the density dependent
bag constant. To parameterize the density dependent bag constant, we use our
results for the lowest order constrained variational (LOCV) calculations of
asymmetric nuclear matter. Our calculations for the structure properties of the
strange star at different temperatures indicate that its maximum mass decreases
by increasing the temperature. We have also compared our results with those of
a fixed value of the bag constant. It can be seen that the density dependent
bag constant leads to higher values of the maximum mass and radius for the
strange star.Comment: 21 pages, 2 tables, 12 figures Astrophys. (2011) accepte
Simultaneous disruption of two DNA polymerases, Polη and Polζ, in Avian DT40 cells unmasks the role of Polη in cellular response to various DNA lesions
Replicative DNA polymerases are frequently stalled by DNA lesions. The resulting replication blockage is released by homologous recombination (HR) and translesion DNA synthesis (TLS). TLS employs specialized TLS polymerases to bypass DNA lesions. We provide striking in vivo evidence of the cooperation between DNA polymerase η, which is mutated in the variant form of the cancer predisposition disorder xeroderma pigmentosum (XP-V), and DNA polymerase ζ by generating POLη−/−/POLζ−/− cells from the chicken DT40 cell line. POLζ−/− cells are hypersensitive to a very wide range of DNA damaging agents, whereas XP-V cells exhibit moderate sensitivity to ultraviolet light (UV) only in the presence of caffeine treatment and exhibit no significant sensitivity to any other damaging agents. It is therefore widely believed that Polη plays a very specific role in cellular tolerance to UV-induced DNA damage. The evidence we present challenges this assumption. The phenotypic analysis of POLη−/−/POLζ−/− cells shows that, unexpectedly, the loss of Polη significantly rescued all mutant phenotypes of POLζ−/− cells and results in the restoration of the DNA damage tolerance by a backup pathway including HR. Taken together, Polη contributes to a much wide range of TLS events than had been predicted by the phenotype of XP-V cells
Ovarian cancer
Ovarian cancer is not a single disease and can be subdivided into at least five different histological subtypes that have different identifiable risk factors, cells of origin, molecular compositions, clinical features and treatments. Ovarian cancer is a global problem, is typically diagnosed at a late stage and has no effective screening strategy. Standard treatments for newly diagnosed cancer consist of cytoreductive surgery and platinum-based chemotherapy. In recurrent cancer, chemotherapy, anti-angiogenic agents and poly(ADP-ribose) polymerase inhibitors are used, and immunological therapies are currently being tested. High-grade serous carcinoma (HGSC) is the most commonly diagnosed form of ovarian cancer and at diagnosis is typically very responsive to platinum-based chemotherapy. However, in addition to the other histologies, HGSCs frequently relapse and become increasingly resistant to chemotherapy. Consequently, understanding the mechanisms underlying platinum resistance and finding ways to overcome them are active areas of study in ovarian cancer. Substantial progress has been made in identifying genes that are associated with a high risk of ovarian cancer (such as BRCA1 and BRCA2), as well as a precursor lesion of HGSC called serous tubal intraepithelial carcinoma, which holds promise for identifying individuals at high risk of developing the disease and for developing prevention strategies
Human-Aware Robot Collaborative Task Planning Using Artificial Potential Field and DQN Reinforcement Learning
This paper presents a novel way for Robot-Robot-Human interaction in a shared workspace for collaborative tasks and uses a multi-modal means of communication that includes hand gestures, voice commands, end-effector gestures, and marker tracking. The system consists of a human operator working along with a Task robot (UR5) and a helper robot (OpenManipulatorX) to perform assembly and disassembly tasks. A Deep Q Network (DQN) reinforcement learning model is used to train the robot to perform the goal reaching task while avoiding obstacles to ensure safety. The DQN algorithm makes use of the end-effector position and the relative positions with the goal and obstacles to train a policy that guides the robot arm safely. Then 4 different training models are created and their ability to avoid obstacles and reach the goal are compared along with the point-to-point Bezier interpolation path planning method in different scenarios such as varying height, size, and number of obstacles. The proposed system has been simulated and then experimentally validated. Experimental results show that DQN trained model performed better than Bezier interpolation in reaching the final goal position with an accuracy of 74mm while avoiding obstacles at the same time in a shared environment. It is also observed that of the different trained models, the model with a larger action space and reduced observation space gave better results compared to others in terms of accuracy and goal completion rate. Also, from experimental data its observed that Improved Artificial Potential Field (IAPF) only took 4.7s as the median time to reach the goal whereas Goal Directed Approach (GDA) took 7.62s and Rapidly Exploring Random Tree Star (RRT*) took 6.22s in different scenarios
Regulation of proteasome assembly and activity in health and disease
The proteasome degrades most cellular proteins in a controlled and tightly regulated manner and thereby controls many processes, including cell cycle, transcription, signalling, trafficking and protein quality control. Proteasomal degradation is vital in all cells and organisms, and dysfunction or failure of proteasomal degradation is associated with diverse human diseases, including cancer and neurodegeneration. Target selection is an important and well-established way to control protein degradation. In addition, mounting evidence indicates that cells adjust proteasome-mediated degradation to their needs by regulating proteasome abundance through the coordinated expression of proteasome subunits and assembly chaperones. Central to the regulation of proteasome assembly is TOR complex 1 (TORC1), which is the master regulator of cell growth and stress. This Review discusses how proteasome assembly and the regulation of proteasomal degradation are integrated with cellular physiology, including the interplay between the proteasome and autophagy pathways. Understanding these mechanisms has potential implications for disease therapy, as the misregulation of proteasome function contributes to human diseases such as cancer and neurodegeneration.</p
Terms and nomenclature used for plant-derived components in nutrition and related research: efforts toward harmonization.
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.
Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
Male form of persistent Mullerian duct syndrome type I (hernia uteri inguinalis) presenting as an obstructed inguinal hernia: a case report
<p>Abstract</p> <p>Introduction</p> <p>Persistent Mullerian duct syndrome is a rare form of male pseudo-hermaphroditism characterized by the presence of Mullerian duct structures in an otherwise phenotypically, as well as genotypically, normal man; only a few cases have been reported in the worldwide literature. We report the case of a 30-year-old man with unilateral cryptorchidism on the right side and a left-sided obstructed inguinal hernia containing a uterus and fallopian tube (that is, hernia uteri inguinalis; type I male form of persistent Mullerian duct syndrome) coincidentally detected during an operation for an obstructed left inguinal hernia.</p> <p>Case presentation</p> <p>A 30-year-old South Indian man was admitted to our facility with a left-sided obstructed inguinal hernia of one day's duration. He had a 12-year history of inguinal swelling and an absence of the right testis since birth. Our patient had well developed masculine features. Local physical examination revealed a left-sided obstructed inguinal hernia with an absence of the right testis in the scrotum. Exploration of the inguinal canal revealed an indirect inguinal hernia containing omentum, the left corner of the uterus and a left fallopian tube. Extension of the incision revealed a well formed uterus, cervix and upper part of the vagina attached to the prostate by a thick fibrosed band. Total excision of the uterus, bilateral fallopian tubes and right testis was performed. A biopsy was taken from the left testis. The operation was completed by left inguinal herniorraphy. Histopathological examination of the hernial contents was consistent with that of a uterus and fallopian tubes without ovaries. Both testes were atrophied, with complete arrest of spermatogenesis. Post-operative karyotype analyses were negative for 46,XY and Barr bodies on buccal smear. A semen examination revealed azoospermia with a low serum testosterone level.</p> <p>Conclusions</p> <p>In cases of unilateral or bilateral cryptorchidism associated with inguinal hernia, as in our patient's case, the possibility of persistent Mullerian duct syndrome should be kept in mind in order to prevent further complications such as infertility and malignant change. Hernia uteri inguinalis is the type I male form of persistent Mullerian duct syndrome, characterized by one descended testis and herniation of the ipsilateral corner of the uterus and fallopian tube into the inguinal canal.</p
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
- …
