2,280 research outputs found
Berry phase for ferromagnet with fractional spin
We study the double exchange model on two lattice sites with one conduction
electron in the limit of an infinite Hund's interaction. While this simple
problem is exactly solvable, we present an approximate solution which is valid
in the limit of large core spins. This solution is obtained by integrating out
charge degrees of freedom. The effective action of two core spins obtained in
the result of such an integration resembles the action of two fractional spins.
We show that the action obtained via naive gradient expansion is inconsistent.
However, a ``non-perturbative'' treatment leads to an extra term in the
effective action which fixes this inconsistency. The obtained ``Berry phase
term'' is geometric in nature. It arises from a geometric constraint on a
target space imposed by an adiabatic approximation.Comment: 11 pages, 3 figures, revtex
Spin-orbit density wave induced hidden topological order in URu2Si2
The conventional order parameters in quantum matters are often characterized
by 'spontaneous' broken symmetries. However, sometimes the broken symmetries
may blend with the invariant symmetries to lead to mysterious emergent phases.
The heavy fermion metal URu2Si2 is one such example, where the order parameter
responsible for a second-order phase transition at Th = 17.5 K has remained a
long-standing mystery. Here we propose via ab-initio calculation and effective
model that a novel spin-orbit density wave in the f-states is responsible for
the hidden-order phase in URu2Si2. The staggered spin-orbit order 'spontaneous'
breaks rotational, and translational symmetries while time-reversal symmetry
remains intact. Thus it is immune to pressure, but can be destroyed by magnetic
field even at T = 0 K, that means at a quantum critical point. We compute
topological index of the order parameter to show that the hidden order is
topologically invariant. Finally, some verifiable predictions are presented.Comment: (v2) Substantially modified from v1, more calculation and comparison
with experiments are include
Yukawa potentials in systems with partial periodic boundary conditions I : Ewald sums for quasi-two dimensional systems
Yukawa potentials are often used as effective potentials for systems as
colloids, plasmas, etc. When the Debye screening length is large, the Yukawa
potential tends to the non-screened Coulomb potential ; in this small screening
limit, or Coulomb limit, the potential is long ranged. As it is well known in
computer simulation, a simple truncation of the long ranged potential and the
minimum image convention are insufficient to obtain accurate numerical data on
systems. The Ewald method for bulk systems, i.e. with periodic boundary
conditions in all three directions of the space, has already been derived for
Yukawa potential [cf. Y., Rosenfeld, {\it Mol. Phys.}, \bm{88}, 1357, (1996)
and G., Salin and J.-M., Caillol, {\it J. Chem. Phys.}, \bm{113}, 10459,
(2000)], but for systems with partial periodic boundary conditions, the Ewald
sums have only recently been obtained [M., Mazars, {\it J. Chem. Phys.}, {\bf
126}, 056101 (2007)]. In this paper, we provide a closed derivation of the
Ewald sums for Yukawa potentials in systems with periodic boundary conditions
in only two directions and for any value of the Debye length. A special
attention is paid to the Coulomb limit and its relation with the
electroneutrality of systems.Comment: 40 pages, 5 figures and 4 table
Thermodynamic analysis of the Quantum Critical behavior of Ce-lattice compounds
A systematic analysis of low temperature magnetic phase diagrams of Ce
compounds is performed in order to recognize the thermodynamic conditions to be
fulfilled by those systems to reach a quantum critical regime and,
alternatively, to identify other kinds of low temperature behaviors. Based on
specific heat () and entropy () results, three different types of
phase diagrams are recognized: i) with the entropy involved into the ordered
phase () decreasing proportionally to the ordering temperature
(), ii) those showing a transference of degrees of freedom from the
ordered phase to a non-magnetic component, with their jump
() vanishing at finite temperature, and iii) those ending in a
critical point at finite temperature because their do not decrease
with producing an entropy accumulation at low temperature.
Only those systems belonging to the first case, i.e. with as
, can be regarded as candidates for quantum critical behavior.
Their magnetic phase boundaries deviate from the classical negative curvature
below \,K, denouncing frequent misleading extrapolations down to
T=0. Different characteristic concentrations are recognized and analyzed for
Ce-ligand alloyed systems. Particularly, a pre-critical region is identified,
where the nature of the magnetic transition undergoes significant
modifications, with its discontinuity strongly
affected by magnetic field and showing an increasing remnant entropy at . Physical constraints arising from the third law at are discussed
and recognized from experimental results
Nodular Lymphangitis in HIV-Infected Patients in Tanzania
Data on nodular lymphangitis among HIV-infected patients in Tanzania are scarce. Nodular lymphangitis defines a clinical presentation with erythematous subcutaneous nodules along the lymphatic channels. Early diagnosis, biopsy or culture of skin lesions and treatment are essential for improving outcomes. However, this is challenging in resource-limited settings. We present two HIV-infected patients with nodular lymphangitis treated with ketoconazole in the absence of itraconazole or amphotericin B with good initial response. At the end of treatment, patient no. 2 showed a total resolution of the lesions, but patient no. 1 died after self-withdrawing from treatment at month four
Search For Heavy Pointlike Dirac Monopoles
We have searched for central production of a pair of photons with high
transverse energies in collisions at TeV using of data collected with the D\O detector at the Fermilab Tevatron in
1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could
rescatter pairs of nearly real photons into this final state via a box diagram.
We observe no excess of events above background, and set lower 95% C.L. limits
of on the mass of a spin 0, 1/2, or 1 Dirac
monopole.Comment: 12 pages, 4 figure
Search for High Mass Photon Pairs in p-pbar --> gamma-gamma-jet-jet Events at sqrt(s)=1.8 TeV
A search has been carried out for events in the channel p-barp --> gamma
gamma jet jet. Such a signature can characterize the production of a
non-standard Higgs boson together with a W or Z boson. We refer to this
non-standard Higgs, having standard model couplings to vector bosons but no
coupling to fermions, as a "bosonic Higgs." With the requirement of two high
transverse energy photons and two jets, the diphoton mass (m(gamma gamma))
distribution is consistent with expected background. A 90(95)% C.L. upper limit
on the cross section as a function of mass is calculated, ranging from
0.60(0.80) pb for m(gamma gamma) = 65 GeV/c^2 to 0.26(0.34) pb for m(gamma
gamma) = 150 GeV/c^2, corresponding to a 95% C.L. lower limit on the mass of a
bosonic Higgs of 78.5 GeV/c^2.Comment: 9 pages, 3 figures. Replacement has new H->gamma gamma branching
ratios and corresponding new mass limit
Persistence within dendritic cells marks an antifungal evasion and dissemination strategy of Aspergillus terreus
Aspergillus terreus is an airborne human fungal pathogen causing life-threatening invasive aspergillosis in immunocompromised patients. In contrast to Aspergillus fumigatus, A. terreus infections are associated with high dissemination rates and poor response to antifungal treatment. Here, we compared the interaction of conidia from both fungal species with MUTZ-3-derived dendritic cells (DCs). After phagocytosis, A. fumigatus conidia rapidly escaped from DCs, whereas A. terreus conidia remained persisting with long-term survival. Escape from DCs was independent from DHN-melanin, as A. terreus conidia expressing wA showed no increased intracellular germination. Within DCs A. terreus conidia were protected from antifungals, whereas A. fumigatus conidia were efficiently cleared. Furthermore, while A. fumigatus conidia triggered expression of DC activation markers such as CD80, CD83, CD54, MHCII and CCR7, persistent A. terreus conidia were significantly less immunogenic. Moreover, DCs confronted with A. terreus conidia neither produced pro-inflammatory nor T-cell stimulating cytokines. However, TNF-α addition resulted in activation of DCs and provoked the expression of migration markers without inactivating intracellular A. terreus conidia. Therefore, persistence within DCs and possibly within other immune cells might contribute to the low response of A. terreus infections to antifungal treatment and could be responsible for its high dissemination rates
A Profile Likelihood Analysis of the Constrained MSSM with Genetic Algorithms
The Constrained Minimal Supersymmetric Standard Model (CMSSM) is one of the
simplest and most widely-studied supersymmetric extensions to the standard
model of particle physics. Nevertheless, current data do not sufficiently
constrain the model parameters in a way completely independent of priors,
statistical measures and scanning techniques. We present a new technique for
scanning supersymmetric parameter spaces, optimised for frequentist profile
likelihood analyses and based on Genetic Algorithms. We apply this technique to
the CMSSM, taking into account existing collider and cosmological data in our
global fit. We compare our method to the MultiNest algorithm, an efficient
Bayesian technique, paying particular attention to the best-fit points and
implications for particle masses at the LHC and dark matter searches. Our
global best-fit point lies in the focus point region. We find many
high-likelihood points in both the stau co-annihilation and focus point
regions, including a previously neglected section of the co-annihilation region
at large m_0. We show that there are many high-likelihood points in the CMSSM
parameter space commonly missed by existing scanning techniques, especially at
high masses. This has a significant influence on the derived confidence regions
for parameters and observables, and can dramatically change the entire
statistical inference of such scans.Comment: 47 pages, 8 figures; Fig. 8, Table 7 and more discussions added to
Sec. 3.4.2 in response to referee's comments; accepted for publication in
JHE
- …
