50 research outputs found

    B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response

    Get PDF
    We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the μMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous μMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization. © 2013 Kozakiewicz et al

    Optimization of xylanase production by filamentous fungi in solid state fermentation and scale-up to horizontal tube bioreactor

    Get PDF
    Five microorganisms, namely Aspergillus niger CECT 2700, A. niger CECT 2915, A. niger CECT 2088, Aspergillus terreus CECT 2808, and Rhizopus stolonifer CECT 2344, were grown on corncob to produce cell wall polysaccharide-degrading enzymes, mainly xylanases, by solid-state fermentation (SSF). A. niger CECT 2700 produced the highest amount of xylanases of 504±7 U/g dry corncob (dcc) after 3 days of fermentation. The optimization of the culture broth (5.0 g/L NaNO3, 1.3 g/L (NH4)2SO4, 4.5 g/L KH2PO4, and 3 g/L yeast extract) and operational conditions (5 g of bed loading, using an initial substrate to moistening medium of 1:3.6 (w/v)) allowed increasing the predicted maximal xylanase activity up to 2,452.7 U/g dcc. However, different pretreatments of materials, including destarching, autoclaving, microwave, and alkaline treatments, were detrimental. Finally, the process was successfully established in a laboratory-scale horizontal tube biore- actor, achieving the highest xylanase activity (2,926 U/g dcc) at a flow rate of 0.2 L/min. The result showed an overall 5.8-fold increase in xylanase activity after optimization of culture media, operational conditions, and scale-up.We are grateful to the Spanish Ministry of Science and Innovation for the financial support of this work (project CTQ2011-28967), which has partial financial support from the FEDER funds of the European Union; to the Leonardo da Vinci Programme for founding the stay of Felisbela Oliveira in Vigo University; to MAEC-AECID (Spanish Government) for the financial support for Perez-Bibbins, B. and to Spanish Ministry of Education, Culture and Sports for Perez-Rodriguez's FPU; and to Solla E. and Mendez J. (CACTI-University of Vigo) for their excellent technical assistance in microscopy

    Hydrogel-Assisted Antisense LNA Gapmer Delivery for In Situ Gene Silencing in Spinal Cord Injury

    Get PDF
    After spinal cord injury (SCI), nerve regeneration is severely hampered due to the establishment of a highly inhibitory microenvironment at the injury site, through the contribution of multiple factors. The potential of antisense oligonucleotides (AONs) to modify gene expression at different levels, allowing the regulation of cell survival and cell function, together with the availability of chemically modified nucleic acids with favorable biopharmaceutical properties, make AONs an attractive tool for novel SCI therapy developments. In this work, we explored the potential of locked nucleic acid (LNA)-modified AON gapmers in combination with a fibrin hydrogel bridging material to induce gene silencing in situ at a SCI lesion site. LNA gapmers were effectively developed against two promising gene targets aiming at enhancing axonal regeneration—RhoA and GSK3ß. The fibrin-matrix-assisted AON delivery system mediated potent RNA knockdown in vitro in a dorsal root ganglion explant culture system and in vivo at a SCI lesion site, achieving around 75% downregulation 5 days after hydrogel injection. Our results show that local implantation of a AON-gapmer-loaded hydrogel matrix mediated efficient gene silencing in the lesioned spinal cord and is an innovative platform that can potentially combine gene regulation with regenerative permissive substrates aiming at SCI therapeutics and nerve regeneration.This work was supported by Fundação para a Ciência e a Tecnologia ( FCT , Portugal) in the framework of the Harvard-Portugal Medical School Program ( HMSP-ICT/0020/2010 ); Project NORTE-01-0145-FEDER-000008 , supported by the Norte Portugal Regional Operational Programme (NORTE 2020) , under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) ; Fundo Europeu de Desenvolvimento Regional funds through COMPETE 2020 - Operational Program for Competitiveness and Internationalization (POCI) , Portugal 2020; by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project “Institute for Research and Innovation in Health Sciences” ( POCI-01-0145-FEDER-007274 ); Marie Curie Actions of the European Community’s 7th Framework Program ( PIEF-GA-2011-300485 to P.M.D.M.); Santa Casa da Misericordia de Lisboa – Prémio Neurociências Mello e Castro , and FCT fellowship SFRH/BPD/108738/2015 (to P.M.D.M). Funding for open access charge: Project NORTE-01-0145-FEDER-000012 , financed by Norte Portugal Regional Operational Programme (NORTE 2020) , under the PORTUGAL 2020 Partnership Agreement, through the ERDF . We would like to acknowledge the support from Paula Magalhães and Tânia Meireles from the i3S Cell Culture and Genotyping Core Facility in real-time PCR experiments

    Cosmology with the Laser Interferometer Space Antenna

    Get PDF
    The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational wave observations by LISA to probe the universe

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Protecting the most vulnerable: Tuberculosis in immunocompromised individuals

    No full text
    The interaction of Mycobacterium tuberculosis with components of the innate and acquired immune system has significant implications for the clinical outcome of infection (clearance, latency or progression to active disease). Thus, the risk of progressing from LTBI to active TB is greater in some populations. Understanding which populations are at increased risk of TBI and of TB disease is essential to understand who we should screen and treat for TBI. In the past decades, much new knowledge on epidemiology, risk factors and treatment of TBI has been gathered, which is summarised in this chapter. © ERS 2023

    Hydrogel-Assisted Antisense LNA Gapmer Delivery for In Situ Gene Silencing in Spinal Cord Injury

    No full text
    After spinal cord injury (SCI), nerve regeneration is severely hampered due to the establishment of a highly inhibitory microenvironment at the injury site, through the contribution of multiple factors. The potential of antisense oligonucleotides (AONs) to modify gene expression at different levels, allowing the regulation of cell survival and cell function, together with the availability of chemically modified nucleic acids with favorable biopharmaceutical properties, make AONs an attractive tool for novel SCI therapy developments. In this work, we explored the potential of locked nucleic acid (LNA)-modified AON gapmers in combination with a fibrin hydrogel bridging material to induce gene silencing in situ at a SCI lesion site. LNA gapmers were effectively developed against two promising gene targets aiming at enhancing axonal regeneration—RhoA and GSK3ß. The fibrin-matrix-assisted AON delivery system mediated potent RNA knockdown in vitro in a dorsal root ganglion explant culture system and in vivo at a SCI lesion site, achieving around 75% downregulation 5 days after hydrogel injection. Our results show that local implantation of a AON-gapmer-loaded hydrogel matrix mediated efficient gene silencing in the lesioned spinal cord and is an innovative platform that can potentially combine gene regulation with regenerative permissive substrates aiming at SCI therapeutics and nerve regeneration.This work was supported by Fundação para a Ciência e a Tecnologia ( FCT , Portugal) in the framework of the Harvard-Portugal Medical School Program ( HMSP-ICT/0020/2010 ); Project NORTE-01-0145-FEDER-000008 , supported by the Norte Portugal Regional Operational Programme (NORTE 2020) , under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) ; Fundo Europeu de Desenvolvimento Regional funds through COMPETE 2020 - Operational Program for Competitiveness and Internationalization (POCI) , Portugal 2020; by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project “Institute for Research and Innovation in Health Sciences” ( POCI-01-0145-FEDER-007274 ); Marie Curie Actions of the European Community’s 7th Framework Program ( PIEF-GA-2011-300485 to P.M.D.M.); Santa Casa da Misericordia de Lisboa – Prémio Neurociências Mello e Castro , and FCT fellowship SFRH/BPD/108738/2015 (to P.M.D.M). Funding for open access charge: Project NORTE-01-0145-FEDER-000012 , financed by Norte Portugal Regional Operational Programme (NORTE 2020) , under the PORTUGAL 2020 Partnership Agreement, through the ERDF . We would like to acknowledge the support from Paula Magalhães and Tânia Meireles from the i3S Cell Culture and Genotyping Core Facility in real-time PCR experiments

    On the assessment of thermo-mechanical degradability of multi-recycled ABS polymer for 3D printing applications

    No full text
    Although additive manufacturing (AM) has offered proven ability to reduce waste when compared with traditional manufacturing techniques, however, AM processes such as fused filament fabrication (FFF) still poses some negative environmental and economic aspects in terms of generated waste. This waste comes from rafts, supports, or bases that are parts of the supporting structure necessary in the construction of proper 3D-printed parts. In addition, another source of waste comes from jobs that failed due to a variety of reasons as is common with 3D printing. One possible way to minimize the negative effect is to recycle this waste material. Through the usage of commercially available cutting mills and extruder equipment that are easily procurable, it is possible to recycle the waste and reuse it as a filament. In this context, this paper aims to experimentally investigate the feasibility of recycling 3D printing waste material, namely of ABS material which is a popular 3D printing material and to evaluate changes in the mechanical behaviour after each recycling cycle, while taking the performance of the virgin material as a reference point. The mechanical behaviour of the recycled materials was assessed as a function of obtainable tensile strength, toughness and thermal transition. The results show that the ABS filament shows great promise for recycling at least once and could lead to significant material and cost savings. In this work, it is possible to observe how many times ABS can be recycled and used as filament, without adding virgin material.Institute for Automation and Applied Informatics (IAI) Karlsruhe Institute of Technology (KIT)São Paulo State University (UNESP)Faculty of Engineering Port Said UniversityKarlsruhe Institute of Technology Karlsruhe Nano Micro Facility (KNMF), Hermann-von-Helmholtz-Platz 1São Paulo State University (UNESP
    corecore