325 research outputs found
Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in acute lung injury to reduce pulmonary dysfunction (HARP-2) trial : study protocol for a randomized controlled trial
Acute lung injury (ALI) is a common devastating clinical syndrome characterized by life-threatening respiratory failure requiring mechanical ventilation and multiple organ failure. There are in vitro, animal studies and pre-clinical data suggesting that statins may be beneficial in ALI. The Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in Acute lung injury to Reduce Pulmonary dysfunction (HARP-2) trial is a multicenter, prospective, randomized, allocation concealed, double-blind, placebo-controlled clinical trial which aims to test the hypothesis that treatment with simvastatin will improve clinical outcomes in patients with ALI
Modelling thirty-day mortality in the acute respiratory distress syndrome (ARDS) in an adult ICU
Publisher's copy made available with the permission of the publisher © Australian Society of AnaesthetistsVariables predicting thirty-day outcome from Acute Respiratory Distress Syndrome (ARDS) were analysed using Cox regression structured for time-varying covariates. Over a three-year period, 1996-1998, consecutive patients with ARDS (bilateral chest X-ray opacities, PaO₂/FiO₂ ratio of <200 and an acute precipitating event) were identified using a prospective computerized data base in a university teaching hospital ICU. The cohort, 106 mechanically ventilated patients, was of mean (SD) age 63.5 (15.5) years and 37% were female. Primary lung injury occurred in 45% and 24% were postoperative. ICU-admission day APACHE II score was 25 (8); ARDS onset time from ICU admission was 1 day (median: range 0-16) and 30 day mortality was 41% (95% CI: 33%-51%). At ARDS onset, PaO₂/FiO₂ ratio was 92 (31), 81% had four-quadrant chest X-ray opacification and lung injury score was 2.75 (0.45). Average mechanical ventilator tidal volume was 10.3 ml/ predicted kg weight. Cox model mortality predictors (hazard ratio, 95% CI) were: APACHE II score, 1.15 (1.09-1.21); ARDS lag time (days), 0.72 (0.58-0.89); direct versus indirect injury, 2.89 (1.45-5.76); PaO₂/FiO₂ ratio, 0.98 (0.97-0.99); operative versus non-operative category, 0.24 (0.09-0.63). Time-varying effects were evident for PaO₂/FiO₂ ratio, operative versus non-operative category and ventilator tidal volume assessed as a categorical predictor with a cut-point of 8 ml/kg predicted weight (mean tidal volumes, 7.1 (1.9) vs 10.7 (1.6) ml/kg predicted weight). Thirty-day survival was improved for patients ventilated with lower tidal volumes. Survival predictors in ARDS were multifactorial and related to patient-injury-time interaction and level of mechanical ventilator tidal volume.J. L. Moran, P. J. Solomon, V. Fox, M. Salagaras, P. J. Williams, K. Quinlan, A. D. Berstenhttp://www.aaic.net.au/Article.asp?D=200332
Mechanical ventilation in intensive and critical care units of Russia: RuVent national epidemiologic study
Brazilian Consensus on perioperative hemodynamic therapy goal guided in patients undergoing noncardiac surgery: fluid management strategy – produced by the São Paulo State Society of Anesthesiology (Sociedade de Anestesiologia do Estado de São Paulo – SAESP)
Febles, Dolor
Advancing donor management research: design and implementation of a large, randomized, placebo-controlled trial
BACKGROUND:Given the persistent shortage of organs for transplantation, new donor management strategies to improve both organ utilization and quality of procured organs are needed. Current management protocols for the care of the deceased donor before organ procurement are based on physiological rationale, experiential reasoning, and retrospective studies without rigorous testing. Although many factors contribute to the lack of controlled clinical trials in donor management, a major factor is the unique challenges posed by research in the brain-dead organ donor.METHODS AND RESULTS:This article describes the study design and the challenges faced during implementation of the Beta-agonists for Oxygenation in Lung Donors (BOLD) study, a randomized, placebo-controlled clinical trial of nebulized albuterol vs. placebo in 500 organ donors. The study design and implementation are described with emphasis on aspects of the study that are unique to research in brain-dead organ donors.CONCLUSIONS:Experience gained during the design and implementation of the BOLD study should be useful for investigators planning future clinical trials in the brain-dead donor population and for intensivists who are involved in the care of the brain-dead organ donor.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]
Physiologically based modeling of lisofylline pharmacokinetics following intravenous administration in mice
Lisofylline (LSF), is the R-(−) enantiomer of the metabolite M1 of pentoxifylline, and is currently under development for the treatment of type 1 diabetes. The aim of the study was to develop a physiologically based pharmacokinetic (PBPK) model of LSF in mice and to perform simulations in order to predict LSF concentrations in human serum and tissues following intravenous and oral administration. The concentrations of LSF in serum, brain, liver, kidneys, lungs, muscle, and gut were determined at different time points over 60 min by a chiral HPLC method with UV detection following a single intravenous dose of LSF to male CD-1 mice. A PBPK model was developed to describe serum pharmacokinetics and tissue distribution of LSF using ADAPT II software. All pharmacokinetic profiles were fitted simultaneously to obtain model parameters. The developed model characterized well LSF disposition in mice. The estimated intrinsic hepatic clearance was 5.427 ml/min and hepatic clearance calculated using the well-stirred model was 1.22 ml/min. The renal clearance of LSF was equal to zero. On scaling the model to humans, a good agreement was found between the predicted by the model and presented in literature serum LSF concentration–time profiles following an intravenous dose of 3 mg/kg. The predicted LSF concentrations in human tissues following oral administration were considerably lower despite the twofold higher dose used and may not be sufficient to exert a pharmacological effect. In conclusion, the mouse is a good model to study LSF pharmacokinetics following intravenous administration. The developed PBPK model may be useful to design future preclinical and clinical studies of this compound
Inhalation Therapy in Patients Receiving Mechanical Ventilation: An Update
Incremental gains in understanding the influence of various factors on aerosol delivery in concert with technological advancements over the past 2 decades have fueled an ever burgeoning literature on aerosol therapy during mechanical ventilation. In-line use of pressurized metered-dose inhalers (pMDIs) and nebulizers is influenced by a host of factors, some of which are unique to ventilator-supported patients. This article reviews the impact of various factors on aerosol delivery with pMDIs and nebulizers, and elucidates the correlation between in-vitro estimates and in-vivo measurement of aerosol deposition in the lung. Aerosolized bronchodilator therapy with pMDIs and nebulizers is commonly employed in intensive care units (ICUs), and bronchodilators are among the most frequently used therapies in mechanically ventilated patients. The use of inhaled bronchodilators is not restricted to mechanically ventilated patients with chronic obstructive pulmonary disease (COPD) and asthma, as they are routinely employed in other ventilator-dependent patients without confirmed airflow obstruction. The efficacy and safety of bronchodilator therapy has generated a great deal of interest in employing other inhaled therapies, such as surfactant, antibiotics, prostacyclins, diuretics, anticoagulants and mucoactive agents, among others, in attempts to improve outcomes in critically ill ICU patients receiving mechanical ventilation
- …
