6,280 research outputs found
A comparison of long and short versions of the oral health impact profile in an edentulous population
Abstract no. 215published_or_final_versio
Determining Training Needs for Cloud Infrastructure Investigations using I-STRIDE
As more businesses and users adopt cloud computing services, security
vulnerabilities will be increasingly found and exploited. There are many
technological and political challenges where investigation of potentially
criminal incidents in the cloud are concerned. Security experts, however, must
still be able to acquire and analyze data in a methodical, rigorous and
forensically sound manner. This work applies the STRIDE asset-based risk
assessment method to cloud computing infrastructure for the purpose of
identifying and assessing an organization's ability to respond to and
investigate breaches in cloud computing environments. An extension to the
STRIDE risk assessment model is proposed to help organizations quickly respond
to incidents while ensuring acquisition and integrity of the largest amount of
digital evidence possible. Further, the proposed model allows organizations to
assess the needs and capacity of their incident responders before an incident
occurs.Comment: 13 pages, 3 figures, 3 tables, 5th International Conference on
Digital Forensics and Cyber Crime; Digital Forensics and Cyber Crime, pp.
223-236, 201
A boundary layer scaling technique for estimating near-surface wind energy using numerical weather prediction and wind map data
A boundary layer scaling (BLS) method for predicting long-term average near-surface wind speeds and power densities was developed in this work. The method was based on the scaling of reference climatological data either from long-term average wind maps or from hourly wind speeds obtained from high-resolution Numerical Weather Prediction (NWP) models, with case study applications from Great Britain. It incorporated a more detailed parameterisation of surface aerodynamics than previous studies and the predicted wind speeds and power densities were validated against observational wind speeds from 124 sites across Great Britain. The BLS model could offer long-term average wind speed predictions using wind map data derived from long-term observational data, with a mean percentage error of 1.5 % which provided an improvement on the commonly used NOABL (Numerical Objective Analysis of Boundary Layer) wind map. The boundary layer scaling of NWP data was not, however, able to improve upon the use of raw NWP data for near surface wind speed predictions. However, the use of NWP data scaled by the BLS model could offer improved power density predictions compared to the use of the reference data sets. Using a vertical scaling of the shape factor of a Weibull distribution fitted to the BLS NWP data, power density predictions with a 1 % mean percentage error were achieved. This provided a significant improvement on the use of a fixed shape factor which must be utilised when only long-term average wind speeds are available from reference wind maps. The work therefore highlights the advantages that use of a BLS model for wind speed and NWP data for power density predictions can offer for small to medium scale wind energy resource assessments, potentially facilitating more robust annual energy production and financial assessments of prospective small and medium scale wind turbine installations
Virtual patients design and its effect on clinical reasoning and student experience : a protocol for a randomised factorial multi-centre study
Background
Virtual Patients (VPs) are web-based representations of realistic clinical cases. They are proposed as being an optimal method for teaching clinical reasoning skills. International standards exist which define precisely what constitutes a VP. There are multiple design possibilities for VPs, however there is little formal evidence to support individual design features. The purpose of this trial is to explore the effect of two different potentially important design features on clinical reasoning skills and the student experience. These are the branching case pathways (present or absent) and structured clinical reasoning feedback (present or absent).
Methods/Design
This is a multi-centre randomised 2x2 factorial design study evaluating two independent variables of VP design, branching (present or absent), and structured clinical reasoning feedback (present or absent).The study will be carried out in medical student volunteers in one year group from three university medical schools in the United Kingdom, Warwick, Keele and Birmingham. There are four core musculoskeletal topics. Each case can be designed in four different ways, equating to 16 VPs required for the research. Students will be randomised to four groups, completing the four VP topics in the same order, but with each group exposed to a different VP design sequentially. All students will be exposed to the four designs. Primary outcomes are performance for each case design in a standardized fifteen item clinical reasoning assessment, integrated into each VP, which is identical for each topic. Additionally a 15-item self-reported evaluation is completed for each VP, based on a widely used EViP tool. Student patterns of use of the VPs will be recorded.
In one centre, formative clinical and examination performance will be recorded, along with a self reported pre and post-intervention reasoning score, the DTI. Our power calculations indicate a sample size of 112 is required for both primary outcomes
A four-helix bundle stores copper for methane oxidation
Methane-oxidising bacteria (methanotrophs) require large quantities of copper for the membrane-bound (particulate) methane monooxygenase (pMMO). Certain methanotrophs are also able to switch to using the iron-containing soluble MMO (sMMO) to catalyse methane oxidation, with this switchover regulated by copper. MMOs are Nature’s primary biological mechanism for suppressing atmospheric levels of methane, a potent greenhouse gas. Furthermore, methanotrophs and MMOs have enormous potential in bioremediation and for biotransformations producing bulk and fine chemicals, and in bioenergy, particularly considering increased methane availability from renewable sources and hydraulic fracturing of shale rock. We have discovered and characterised a novel copper storage protein (Csp1) from the methanotroph Methylosinus trichosporium OB3b that is exported from the cytosol, and stores copper for pMMO. Csp1 is a tetramer of 4-helix bundles with each monomer binding up to 13 Cu(I) ions in a previously unseen manner via mainly Cys residues that point into the core of the bundle. Csp1 is the first example of a protein that stores a metal within an established protein-folding motif. This work provides a detailed insight into how methanotrophs accumulate copper for the oxidation of methane. Understanding this process is essential if the wide-ranging biotechnological applications of methanotrophs are to be realised. Cytosolic homologues of Csp1 are present in diverse bacteria thus challenging the dogma that such organisms do not use copper in this location
A tri-dimensional approach for auditing brand loyalty
Over the past twenty years brand loyalty has been an important topic for both marketing practitioners and academics. While practitioners have produced proprietary brand loyalty audit models, there has been little academic research to make transparent the methodology that underpins these audits and to enable practitioners to understand, develop and conduct their own audits. In this paper, we propose a framework for a brand loyalty audit that uses a tri-dimensional approach to brand loyalty, which includes behavioural loyalty and the two components of attitudinal loyalty: emotional and cognitive loyalty. In allowing for different levels and intensity of brand loyalty, this tri-dimensional approach is important from a managerial perspective. It means that loyalty strategies that arise from a brand audit can be made more effective by targeting the market segments that demonstrate the most appropriate combination of brand loyalty components. We propose a matrix with three dimensions (emotional, cognitive and behavioural loyalty) and two levels (high and low loyalty) to facilitate a brand loyalty audit. To demonstrate this matrix, we use the example of financial services, in particular a rewards-based credit card
Signal Propagation in Feedforward Neuronal Networks with Unreliable Synapses
In this paper, we systematically investigate both the synfire propagation and
firing rate propagation in feedforward neuronal network coupled in an
all-to-all fashion. In contrast to most earlier work, where only reliable
synaptic connections are considered, we mainly examine the effects of
unreliable synapses on both types of neural activity propagation in this work.
We first study networks composed of purely excitatory neurons. Our results show
that both the successful transmission probability and excitatory synaptic
strength largely influence the propagation of these two types of neural
activities, and better tuning of these synaptic parameters makes the considered
network support stable signal propagation. It is also found that noise has
significant but different impacts on these two types of propagation. The
additive Gaussian white noise has the tendency to reduce the precision of the
synfire activity, whereas noise with appropriate intensity can enhance the
performance of firing rate propagation. Further simulations indicate that the
propagation dynamics of the considered neuronal network is not simply
determined by the average amount of received neurotransmitter for each neuron
in a time instant, but also largely influenced by the stochastic effect of
neurotransmitter release. Second, we compare our results with those obtained in
corresponding feedforward neuronal networks connected with reliable synapses
but in a random coupling fashion. We confirm that some differences can be
observed in these two different feedforward neuronal network models. Finally,
we study the signal propagation in feedforward neuronal networks consisting of
both excitatory and inhibitory neurons, and demonstrate that inhibition also
plays an important role in signal propagation in the considered networks.Comment: 33pages, 16 figures; Journal of Computational Neuroscience
(published
Small RNA Profile in Moso Bamboo Root and Leaf Obtained by High Definition Adapters
Moso bamboo (Phyllostachy heterocycla cv. pubescens L.) is an economically important fast-growing tree. In order to gain better understanding of gene expression regulation in this important species we used next generation sequencing to profile small RNAs in leaf and roots of young seedlings. Since standard kits to produce cDNA of small RNAs are biased for certain small RNAs, we used High Definition adapters that reduce ligation bias. We identified and experimentally validated five new microRNAs and a few other small non-coding RNAs that were not microRNAs. The biological implication of microRNA expression levels and targets of microRNAs are discussed
Nonlinear vortex light beams supported and stabilized by dissipation
We describe nonlinear Bessel vortex beams as localized and stationary
solutions with embedded vorticity to the nonlinear Schr\"odinger equation with
a dissipative term that accounts for the multi-photon absorption processes
taking place at high enough powers in common optical media. In these beams,
power and orbital angular momentum are permanently transferred to matter in the
inner, nonlinear rings, at the same time that they are refueled by spiral
inward currents of energy and angular momentum coming from the outer linear
rings, acting as an intrinsic reservoir. Unlike vortex solitons and dissipative
vortex solitons, the existence of these vortex beams does not critically depend
on the precise form of the dispersive nonlinearities, as Kerr self-focusing or
self-defocusing, and do not require a balancing gain. They have been shown to
play a prominent role in "tubular" filamentation experiments with powerful,
vortex-carrying Bessel beams, where they act as attractors in the beam
propagation dynamics. Nonlinear Bessel vortex beams provide indeed a new
solution to the problem of the stable propagation of ring-shaped vortex light
beams in homogeneous self-focusing Kerr media. A stability analysis
demonstrates that there exist nonlinear Bessel vortex beams with single or
multiple vorticity that are stable against azimuthal breakup and collapse, and
that the mechanism that renders these vortexes stable is dissipation. The
stability properties of nonlinear Bessel vortex beams explain the experimental
observations in the tubular filamentation experiments.Comment: Chapter of boo
- …
