1,458 research outputs found
Mass of the B_c Meson in Three-Flavor Lattice QCD
We use lattice QCD to predict the mass of the meson. We use the MILC
Collaboration's ensembles of lattice gauge fields, which have a quark sea with
two flavors much lighter than a third. Our final result is
. The first error bar is a sum in quadrature
of statistical and systematic uncertainties, and the second is an estimate of
heavy-quark discretization effects.Comment: 4 pages, 3 figures; shorten to fit in PRL; published versio
Fetal in vivo continuous cardiovascular function during chronic hypoxia.
Although the fetal cardiovascular defence to acute hypoxia and the physiology underlying it have been established for decades, how the fetal cardiovascular system responds to chronic hypoxia has been comparatively understudied. We designed and created isobaric hypoxic chambers able to maintain pregnant sheep for prolonged periods of gestation under controlled significant (10% O2) hypoxia, yielding fetal mean P(aO2) levels (11.5 ± 0.6 mmHg) similar to those measured in human fetuses of hypoxic pregnancy. We also created a wireless data acquisition system able to record fetal blood flow signals in addition to fetal blood pressure and heart rate from free moving ewes as the hypoxic pregnancy is developing. We determined in vivo longitudinal changes in fetal cardiovascular function including parallel measurement of fetal carotid and femoral blood flow and oxygen and glucose delivery during the last third of gestation. The ratio of oxygen (from 2.7 ± 0.2 to 3.8 ± 0.8; P < 0.05) and of glucose (from 2.3 ± 0.1 to 3.3 ± 0.6; P < 0.05) delivery to the fetal carotid, relative to the fetal femoral circulation, increased during and shortly after the period of chronic hypoxia. In contrast, oxygen and glucose delivery remained unchanged from baseline in normoxic fetuses. Fetal plasma urate concentration increased significantly during chronic hypoxia but not during normoxia (Δ: 4.8 ± 1.6 vs. 0.5 ± 1.4 μmol l(-1), P<0.05). The data support the hypotheses tested and show persisting redistribution of substrate delivery away from peripheral and towards essential circulations in the chronically hypoxic fetus, associated with increases in xanthine oxidase-derived reactive oxygen species.This work was supported by the British Heart Foundation.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1113/JP27109
Predictions from Lattice QCD
In the past year, we calculated with lattice QCD three quantities that were
unknown or poorly known. They are the dependence of the form factor in
semileptonic decay, the decay constant of the meson, and the
mass of the meson. In this talk, we summarize these calculations, with
emphasis on their (subsequent) confirmation by experiments.Comment: v1: talk given at the International Conference on QCD and Hadronic
Physics, Beijing, June 16-20, 2005; v2: poster presented at the XXIIIrd
International Symposium on Lattice Field Theory, Dublin, July 25-3
In-cell NMR characterization of the secondary structure populations of a disordered conformation of α-Synuclein within E. coli cells
α-Synuclein is a small protein strongly implicated in the pathogenesis of Parkinson’s disease and related neurodegenerative disorders. We report here the use of in-cell NMR spectroscopy to observe directly the structure and dynamics of this protein within E. coli cells. To improve the accuracy in the measurement of backbone chemical shifts within crowded in-cell NMR spectra, we have developed a deconvolution method to reduce inhomogeneous line broadening within cellular samples. The resulting chemical shift values were then used to evaluate the distribution of secondary structure populations which, in the absence of stable tertiary contacts, are a most effective way to describe the conformational fluctuations of disordered proteins. The results indicate that, at least within the bacterial cytosol, α-synuclein populates a highly dynamic state that, despite the highly crowded environment, has the same characteristics as the disordered monomeric form observed in aqueous solution
Aptamer-based multiplexed proteomic technology for biomarker discovery
Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine
Moderators, Mediators, and Other Predictors of Risperidone Response in Children with Autistic Disorder and Irritability
Objective/Background:
The National Institute of Mental Health (NIMH) Research Units on Pediatric Psychopharmacology
(RUPP) Autism Network found an effect size of d = 1.2 in favor of risperidone on the main outcome measure
in an 8-week double-blind, placebo-controlled trial for irritabilityin autistic disorder. This paper explores
moderators and mediators of this effect.
Method:
Intention-to-treat (ITT) analyses were conducted with suspected moderators and mediators entered
into the regression equations. MacArthur Foundation Network subgroup guidelines were followed in the
evaluation of the results.
Results:
Only baseline severity moderated treatment response: Higher severity showed greater improvement
for risperidone but not for placebo. Weight gain mediated treatment response negatively: Those who gained
more weight improved less with risperidone and more with placebo. Compliance correlated with outcome for
risperidone but not placebo. Higher dose correlated with worse outcome for placebo, but not risperidone. Of
nonspecific predictors, parent education, family income, and low baseline prolactin positively predicted
outcome; anxiety, bipolar symptoms, oppositional-defiant symptoms, stereotypy, and hyperactivity
negatively predicted outcome. Risperidone moderated the effect of change in 5'-nucleotidase, a marker of
zinc status, for which decrease was associated with improvement only with risperidone, not with placebo.
Conclusion:
The benefit–risk ratio of risperidone is better with greater symptom severity. Risperidone can be
individually titrated to optimal dosage for excellent response in the majority of children. Weight gain is not
necessary for risperidone benefit and may even detract from it. Socioeconomic advantage, low prolactin, and
absence of co-morbid problems non-specifically predict better outcome. Mineral interactions with
risperidone deserve further study
Higgs-mediated FCNCs: Natural Flavour Conservation vs. Minimal Flavour Violation
We compare the effectiveness of two hypotheses, Natural Flavour Conservation
(NFC) and Minimal Flavour Violation (MFV), in suppressing the strength of
flavour-changing neutral-currents (FCNCs) in models with more than one Higgs
doublet. We show that the MFV hypothesis, in its general formulation, is more
stable in suppressing FCNCs than the hypothesis of NFC alone when quantum
corrections are taken into account. The phenomenological implications of the
two scenarios are discussed analysing meson-antimeson mixing observables and
the rare decays B -> mu+ mu-. We demonstrate that, introducing flavour-blind CP
phases, two-Higgs doublet models respecting the MFV hypothesis can accommodate
a large CP-violating phase in Bs mixing, as hinted by CDF and D0 data and,
without extra free parameters, soften significantly in a correlated manner the
observed anomaly in the relation between epsilon_K and S_psi_K.Comment: 27 pages, 4 figures. v3: minor modifications (typos corrected and few
refs. added), conclusions unchanged; journal versio
Benefits and barriers among volunteer teaching faculty: comparison between those who precept and those who do not in the core pediatrics clerkship
Background: Community-based outpatient experiences are a core component of the clinical years in medical school. Central to the success of this experience is the recruitment and retention of volunteer faculty from the community. Prior studies have identified reasons why some preceptors volunteer their time however, there is a paucity of data comparing those who volunteer from those who do not. Methods: A survey was developed following a review of previous studies addressing perceptions of community-based preceptors. A non-parametric, Mann–Whitney U test was used to compare active preceptors (APs) and inactive preceptors (IPs) and all data were analyzed in SPSS 20.0. Results: There was a 28% response rate. Preceptors showed similar demographic characteristics, valued intrinsic over extrinsic benefits, and appreciated Continuing Medical Education (CME)/Maintenance of Certification (MOC) opportunities as the highest extrinsic reward. APs were more likely to also precept at the M1/M2 level and value recognition and faculty development opportunities (p<0.05). IPs denoted time as the most significant barrier and, in comparison to APs, rated financial compensation as more important (p<0.05). Conclusions: Community preceptors are motivated by intrinsic benefits of teaching. Efforts to recruit should initially focus on promoting awareness of teaching opportunities and offering CME/MOC opportunities. Increasing the pool of preceptors may require financial compensation
A Measurement of Rb using a Double Tagging Method
The fraction of Z to bbbar events in hadronic Z decays has been measured by
the OPAL experiment using the data collected at LEP between 1992 and 1995. The
Z to bbbar decays were tagged using displaced secondary vertices, and high
momentum electrons and muons. Systematic uncertainties were reduced by
measuring the b-tagging efficiency using a double tagging technique. Efficiency
correlations between opposite hemispheres of an event are small, and are well
understood through comparisons between real and simulated data samples. A value
of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is
statistical and the second systematic. The uncertainty on Rc, the fraction of Z
to ccbar events in hadronic Z decays, is not included in the errors. The
dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the
deviation of Rc from the value 0.172 predicted by the Standard Model. The
result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the
Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European
Physical Journal
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …
