6 research outputs found

    Expression of an Engineered Heterologous Antimicrobial Peptide in Potato Alters Plant Development and Mitigates Normal Abiotic and Biotic Responses

    Get PDF
    Antimicrobial cationic peptides (AMPs) are ubiquitous small proteins used by living cells to defend against a wide spectrum of pathogens. Their amphipathic property helps their interaction with negatively charged cellular membrane of the pathogen causing cell lysis and death. AMPs also modulate signaling pathway(s) and cellular processes in animal models; however, little is known of cellular processes other than the pathogen-lysis phenomenon modulated by AMPs in plants. An engineered heterologous AMP, msrA3, expressed in potato was previously shown to cause resistance of the transgenic plants against selected fungal and bacterial pathogens. These lines together with the wild type were studied for growth habits, and for inducible defense responses during challenge with biotic (necrotroph Fusarium solani) and abiotic stressors (dark-induced senescence, wounding and temperature stress). msrA3-expression not only conferred protection against F. solani but also delayed development of floral buds and prolonged vegetative phase. Analysis of select gene transcript profiles showed that the transgenic potato plants were suppressed in the hypersensitive (HR) and reactive oxygen species (ROS) responses to both biotic and abiotic stressors. Also, the transgenic leaves accumulated lesser amounts of the defense hormone jasmonic acid upon wounding with only a slight change in salicylic acid as compared to the wild type. Thus, normal host defense responses to the pathogen and abiotic stressors were mitigated by msrA3 expression suggesting MSRA3 regulates a common step(s) of these response pathways. The stemming of the pathogen growth and mitigating stress response pathways likely contributes to resource reallocation for higher tuber yield

    Current trends and intricacies in the management of HIV-associated pulmonary tuberculosis

    No full text
    Human immunodeficiency virus (HIV) epidemic has undoubtedly increased the incidence of tuberculosis (TB) globally, posing a formidable global health challenge affecting 1.2 million cases. Pulmonary TB assumes utmost significance in the programmatic perspective as it is readily transmissible as well as easily diagnosable. HIV complicates every aspect of pulmonary tuberculosis from diagnosis to treatment, demanding a different approach to effectively tackle both the diseases. In order to control these converging epidemics, it is important to diagnose early, initiate appropriate therapy for both infections, prevent transmission and administer preventive therapy. Liquid culture methods and nucleic acid amplification tests for TB confirmation have replaced conventional solid media, enabling quicker and simultaneous detection of mycobacterium and its drug sensitivity profile Unique problems posed by the syndemic include Acquired rifampicin resistance, drug–drug interactions, malabsorption of drugs and immune reconstitution inflammatory syndrome or paradoxical reaction that complicate dual and concomitant therapy. While the antiretroviral therapy armamentarium is constantly reinforced by discovery of newer and safer drugs every year, only a few drugs for anti tuberculosis treatment have successfully emerged. These include bedaquiline, delamanid and pretomanid which have entered phase III B trials and are also available through conditional access national programmes. The current guidelines by WHO to start Antiretroviral therapy irrespective of CD4+ cell count based on benefits cited by recent trials could go a long way in preventing various complications caused by the deadly duo. This review provides a consolidated gist of the advancements, concepts and updates that have emerged in the management of HIV-associated pulmonary TB for maximizing efficacy, offering latest solutions for tackling drug–drug interactions and remedial measures for immune reconstitution inflammatory syndrome

    In vitro induction of NETosis: Comprehensive live imaging comparison and systematic review

    No full text
    corecore