3,572 research outputs found
Strain amplitude response and the microstructure of PA/clay nanocomposites
Polyamide 6/clay nanocomposites (PAn, where n is the mass fraction of clay) with various clay loading were prepared by melt compounding in a twin screw extruder. Exfoliation of clay in a PA matrix was confirmed by X-ray diffraction. Strain amplitude response of PAn in both melt and solution states has been investigated. In the melt state, critical strain amplitude of PAn is sensitive to strain amplitude response and decrease logarithmically with increasing clay loading. The elastic moduli (G′) of PAn are reversible under frequency loop sweeps. Comparisons of strain amplitude response in both melt and solution states have been conducted. Two different responses have been observed: strain thinning in the melt state and weak strain overshoot in the solution state. FTIR studies show that amide II band of PAn shifts toward high wavenumbers, but amide I band and N–H stretching vibration are independent of clay loading. We suggest that two types of strain amplitude response of PAn can be explained: strain thinning which is dominant in PAn caused by physical adsorption and entanglement of PA chains on nanoclays and weak strain overshoot caused by weak bonds between PA chains and nanoclays
Associations between cardiorespiratory fitness, physical activity and clustered cardiometabolic risk in children and adolescents: the HAPPY study
Clustering of cardiometabolic risk factors can occur during childhood and predisposes individuals to cardiometabolic disease. This study calculated clustered cardiometabolic risk in 100 children and adolescents aged 10-14 years (59 girls) and explored differences according to cardiorespiratory fitness (CRF) levels and time spent at different physical activity (PA) intensities. CRF was determined using a maximal cycle ergometer test, and PA was assessed using accelerometry. A cardiometabolic risk score was computed as the sum of the standardised scores for waist circumference, blood pressure, total cholesterol/high-density lipoprotein ratio, triglycerides and glucose. Differences in clustered cardiometabolic risk between fit and unfit participants, according to previously proposed health-related threshold values, and between tertiles for PA subcomponents were assessed using ANCOVA. Clustered risk was significantly lower (p < 0.001) in the fit group (mean 1.21 ± 3.42) compared to the unfit group (mean -0.74 ± 2.22), while no differences existed between tertiles for any subcomponent of PA. Conclusion These findings suggest that CRF may have an important cardioprotective role in children and adolescents and highlights the importance of promoting CRF in youth
Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission
BACKGROUND: Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model.
METHODS: Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model.
RESULTS: To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva.
CONCLUSION: The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination
Redox linked flavin sites in extracellular decaheme proteins involved in microbe-mineral electron transfer
Extracellular microbe-mineral electron transfer is a major driving force for the oxidation of organic carbon in many subsurface environments. Extracellular multi-heme cytochromes of the Shewenella genus play a major role in this process but the mechanism of electron exchange at the interface between cytochrome and acceptor is widely debated. The 1.8 Å x-ray crystal structure of the decaheme MtrC revealed a highly conserved CX8C disulfide that, when substituted for AX8A, severely compromised the ability of S. oneidensis to grow under aerobic conditions. Reductive cleavage of the disulfide in the presence of flavin mononucleotide (FMN) resulted in the reversible formation of a stable flavocytochrome. Similar results were also observed with other decaheme cytochromes, OmcA, MtrF and UndA. The data suggest that these decaheme cytochromes can transition between highly reactive flavocytochromes or less reactive cytochromes, and that this transition is controlled by a redox active disulfide that responds to the presence of oxygen
Algebraic generation of minimum size orthogonal fractional factorial designs: an approach based on integer linear programming
Generation of orthogonal fractional factorial designs (OFFDs) is an important and extensively studied subject in applied statistics. In this paper we show how searching for an OFFD that satisfies a set of constraints, expressed in terms of orthogonality between simple and interaction effects, is, in many applications, equivalent to solving an integer linear programming problem.We use a recent methodology, based on polynomial counting functions and strata, that represents OFFDs as the positive integer solutions of a system of linear equations. We use this system to set up an optimization problem where the cost function to be minimized is the size of the OFFD and the constraints are represented by the system itself. Finally we search for a solution using standard integer programming techniques. Some applications are also presented in the computational results section. It is worth noting that the methodology does not put any restriction either on the number of levels of each factor or on the orthogonality constraints and so it can be applied to a very wide range of designs, including mixed orthogonal array
The frequency of osteogenic activities and the pattern of intermittence between periods of physical activity and sedentary behaviour affects bone mineral content: the cross-sectional NHANES study
BACKGROUND: Sedentary behaviours, defined as non exercising seated activities, have been shown to have deleterious effects on health. It has been hypothesised that too much sitting time can have a detrimental effect on bone health in youth. The aim of this study is to test this hypothesis by exploring the association between objectively measured volume and patterns of time spent in sedentary behaviours, time spent in specific screen-based sedentary pursuits and bone mineral content (BMC) accrual in youth. METHODS: NHANES 2005–2006 cycle data includes BMC of the femoral and spinal region via dual-energy X-ray absorptiometry (DEXA), assessment of physical activity and sedentary behaviour patterns through accelerometry, self reported time spent in screen based pursuits (watching TV and using a computer), and frequency of vigorous playtime and strengthening activities. Multiple regression analysis, stratified by gender was performed on N = 671 males and N = 677 females aged from 8 to 22 years. RESULTS: Time spent in screen-based sedentary behaviours is negatively associated with femoral BMC (males and females) and spinal BMC (females only) after correction for time spent in moderate and vigorous activity. Regression coefficients indicate that an additional hour per day of screen-based sitting corresponds to a difference of −0.77 g femoral BMC in females [95% CI: -1.31 to −0.22] and of −0.45 g femoral BMC in males [95% CI: -0.83 to −0.06]. This association is attenuated when self-reported engagement in regular (average 5 times per week) strengthening exercise (for males) and vigorous playing (for both males and females) is taken into account. Total sitting time and non screen-based sitting do not appear to have a negative association with BMC, whereas screen based sedentary time does. Patterns of intermittence between periods of sitting and moderate to vigorous activity appears to be positively associated with bone health when activity is clustered in time and inter-spaced with long continuous bouts of sitting. CONCLUSIONS: Some specific sedentary pursuits (screen-based) are negatively associated with bone health in youth. This association is specific to gender and anatomical area. This relationship between screen-based time and bone health is independent of the total amount of physical activity measured objectively, but not independent of self-reported frequency of strengthening and vigorous play activities. The data clearly suggests that the frequency, rather than the volume, of osteogenic activities is important in counteracting the effect of sedentary behaviour on bone health. The pattern of intermittence between sedentary periods and activity also plays a role in bone accrual, with clustered short bouts of activity interspaced with long periods of sedentary behaviours appearing to be more beneficial than activities more evenly spread in time
B-> D* zero-recoil formfactor and the heavy quark expansion in QCD: a systematic study
We present a QCD analysis of heavy quark mesons focussing on the B -> D*
formfactor at zero recoil, F_D*(1). An advanced treatment of the perturbative
corrections in the Wilsonian approach is presented. We estimate the
higher-order power corrections to the OPE sum rule and describe a refined
analysis of the nonresonant continuum contribution. In the framework of a
model-independent approach, we show that the inelastic contribution in the
phenomenological part of the OPE is related to the mQ-dependence of the
hyperfine splitting and conclude that the former is large, lowering the
prediction for F_D*(1) down to about 0.86. This likewise implies an enhanced
yield of radial and D-wave charm excitations in semileptonic B decays and
alleviates the problem with the inclusive yield of the wide excited states. We
also apply the approach to the expectation values of dimension 7 and 8 local
operators and to a few other issues in the heavy quark expansion.Comment: 70 pages, 13 figure
Combining multiplex fluorescence in situ hybridization with fluorescent immunohistochemistry on fresh frozen or fixed mouse brain sections
Fluorescent in situ hybridization (FISH) is a molecular technique that identifies the presence and spatial distribution of specific RNA transcripts within cells. Neurochemical phenotyping of functionally identified neurons usually requires concurrent labelling with multiple antibodies (targeting protein) using immunohistochemistry (IHC) and optimization of in situ hybridization (targeting RNA), in tandem. A "neurochemical signature" to characterize particular neurons may be achieved however complicating factors include the need to verify FISH and IHC targets before combining the methods, and the limited number of RNAs and proteins that may be targeted simultaneously within the same tissue section. Here we describe a protocol, using both fresh frozen and fixed mouse brain preparations, which detects multiple mRNAs and proteins in the same brain section using RNAscope FISH followed by fluorescence immunostaining, respectively. We use the combined method to describe the expression pattern of low abundance mRNAs (e.g., galanin receptor 1) and high abundance mRNAs (e.g., glycine transporter 2), in immunohistochemically identified brainstem nuclei. Key considerations for protein labelling downstream of the FISH assay extend beyond tissue preparation and optimization of FISH probe labelling. For example, we found that antibody binding and labelling specificity can be detrimentally affected by the protease step within the FISH probe assay. Proteases catalyze hydrolytic cleavage of peptide bonds, facilitating FISH probe entry into cells, however they may also digest the protein targeted by the subsequent IHC assay, producing off target binding. The subcellular location of the targeted protein is another factor contributing to IHC success following FISH probe assay. We observed IHC specificity to be retained when the targeted protein is membrane bound, whereas IHC targeting cytoplasmic protein required extensive troubleshooting. Finally, we found handling of slide-mounted fixed frozen tissue more challenging than fresh frozen tissue, however IHC quality was overall better with fixed frozen tissue, when combined with RNAscope
Systematic review of antiepileptic drugs’ safety and effectiveness in feline epilepsy
Understanding the efficacy and safety profile of antiepileptic drugs (AEDs) in feline epilepsy is a crucial consideration for managing this important brain disease. However, there is a lack of information about the treatment of feline epilepsy and therefore a systematic review was constructed to assess current evidence for the AEDs’ efficacy and tolerability in cats. The methods and materials of our former systematic reviews in canine epilepsy were mostly mirrored for the current systematic review in cats. Databases of PubMed, CAB Direct and Google scholar were searched to detect peer-reviewed studies reporting efficacy and/or adverse effects of AEDs in cats. The studies were assessed with regards to their quality of evidence, i.e. study design, study population, diagnostic criteria and overall risk of bias and the outcome measures reported, i.e. prevalence and 95% confidence interval of the successful and affected population in each study and in total
Contact Manifolds, Contact Instantons, and Twistor Geometry
Recently, Kallen and Zabzine computed the partition function of a twisted
supersymmetric Yang-Mills theory on the five-dimensional sphere using
localisation techniques. Key to their construction is a five-dimensional
generalisation of the instanton equation to which they refer as the contact
instanton equation. Subject of this article is the twistor construction of this
equation when formulated on K-contact manifolds and the discussion of its
integrability properties. We also present certain extensions to higher
dimensions and supersymmetric generalisations.Comment: v3: 28 pages, clarifications and references added, version to appear
in JHE
- …
