634 research outputs found
Aptamer-based multiplexed proteomic technology for biomarker discovery
Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine
MRI of the lung (3/3)-current applications and future perspectives
BACKGROUND: MRI of the lung is recommended in a number of clinical indications. Having a non-radiation alternative is particularly attractive in children and young subjects, or pregnant women. METHODS: Provided there is sufficient expertise, magnetic resonance imaging (MRI) may be considered as the preferential modality in specific clinical conditions such as cystic fibrosis and acute pulmonary embolism, since additional functional information on respiratory mechanics and regional lung perfusion is provided. In other cases, such as tumours and pneumonia in children, lung MRI may be considered an alternative or adjunct to other modalities with at least similar diagnostic value. RESULTS: In interstitial lung disease, the clinical utility of MRI remains to be proven, but it could provide additional information that will be beneficial in research, or at some stage in clinical practice. Customised protocols for chest imaging combine fast breath-hold acquisitions from a "buffet" of sequences. Having introduced details of imaging protocols in previous articles, the aim of this manuscript is to discuss the advantages and limitations of lung MRI in current clinical practice. CONCLUSION: New developments and future perspectives such as motion-compensated imaging with self-navigated sequences or fast Fourier decomposition MRI for non-contrast enhanced ventilation- and perfusion-weighted imaging of the lung are discussed. Main Messages • MRI evolves as a third lung imaging modality, combining morphological and functional information. • It may be considered first choice in cystic fibrosis and pulmonary embolism of young and pregnant patients. • In other cases (tumours, pneumonia in children), it is an alternative or adjunct to X-ray and CT. • In interstitial lung disease, it serves for research, but the clinical value remains to be proven. • New users are advised to make themselves familiar with the particular advantages and limitations
Lung Cancer in Pulmonary Fibrosis: Tales of Epithelial Cell Plasticity
Lung epithelial cells exhibit a high degree of plasticity. Alterations to lung epithelial cell function are critically involved in several chronic lung diseases such as pulmonary fibrosis. Pulmonary fibrosis is characterized by repetitive injury and subsequent impaired repair of epithelial cells, which leads to aberrant growth factor activation and fibroblast accumulation. Increased proliferation and hyper- and metaplasia of epithelial cells upon injury have also been observed in pulmonary fibrosis; this epithelial cell activation might represent the basis for lung cancer development. Indeed, several studies have provided histopathological evidence of an increased incidence of lung cancer in pulmonary fibrosis. The mechanisms involved in the development of cancer in pulmonary fibrosis, however, remain poorly understood. This review highlights recently uncovered molecular mechanisms shared between lung cancer and fibrosis, which extend the current evidence of a common trait of cancer and fibrosis, as provided by histopathological observations. Copyright (C) 2011 S. Karger AG, Base
Guidance for computed tomography (CT) imaging of the lungs for patients with cystic fibrosis (CF) in research studies
Kernel Architecture of the Genetic Circuitry of the Arabidopsis Circadian System
A wide range of organisms features molecular machines, circadian clocks,
which generate endogenous oscillations with ~24 h periodicity and thereby
synchronize biological processes to diurnal environmental fluctuations.
Recently, it has become clear that plants harbor more complex gene regulatory
circuits within the core circadian clocks than other organisms, inspiring a
fundamental question: are all these regulatory interactions between clock genes
equally crucial for the establishment and maintenance of circadian rhythms? Our
mechanistic simulation for Arabidopsis thaliana demonstrates that at least half
of the total regulatory interactions must be present to express the circadian
molecular profiles observed in wild-type plants. A set of those essential
interactions is called herein a kernel of the circadian system. The kernel
structure unbiasedly reveals four interlocked negative feedback loops
contributing to circadian rhythms, and three feedback loops among them drive
the autonomous oscillation itself. Strikingly, the kernel structure, as well as
the whole clock circuitry, is overwhelmingly composed of inhibitory, rather
than activating, interactions between genes. We found that this tendency
underlies plant circadian molecular profiles which often exhibit
sharply-shaped, cuspidate waveforms. Through the generation of these cuspidate
profiles, inhibitory interactions may facilitate the global coordination of
temporally-distant clock events that are markedly peaked at very specific times
of day. Our systematic approach resulting in experimentally-testable
predictions provides insights into a design principle of biological clockwork,
with implications for synthetic biology.Comment: Supplementary material is available at the journal websit
Differential Analysis of Ovarian and Endometrial Cancers Identifies a Methylator Phenotype
Despite improved outcomes in the past 30 years, less than half of all women diagnosed with epithelial ovarian cancer live five years beyond their diagnosis. Although typically treated as a single disease, epithelial ovarian cancer includes several distinct histological subtypes, such as papillary serous and endometrioid carcinomas. To address whether the morphological differences seen in these carcinomas represent distinct characteristics at the molecular level we analyzed DNA methylation patterns in 11 papillary serous tumors, 9 endometrioid ovarian tumors, 4 normal fallopian tube samples and 6 normal endometrial tissues, plus 8 normal fallopian tube and 4 serous samples from TCGA. For comparison within the endometrioid subtype we added 6 primary uterine endometrioid tumors and 5 endometrioid metastases from uterus to ovary. Data was obtained from 27,578 CpG dinucleotides occurring in or near promoter regions of 14,495 genes. We identified 36 locations with significant increases or decreases in methylation in comparisons of serous tumors and normal fallopian tube samples. Moreover, unsupervised clustering techniques applied to all samples showed three major profiles comprising mostly normal samples, serous tumors, and endometrioid tumors including ovarian, uterine and metastatic origins. The clustering analysis identified 60 differentially methylated sites between the serous group and the normal group. An unrelated set of 25 serous tumors validated the reproducibility of the methylation patterns. In contrast, >1,000 genes were differentially methylated between endometrioid tumors and normal samples. This finding is consistent with a generalized regulatory disruption caused by a methylator phenotype. Through DNA methylation analyses we have identified genes with known roles in ovarian carcinoma etiology, whereas pathway analyses provided biological insight to the role of novel genes. Our finding of differences between serous and endometrioid ovarian tumors indicates that intervention strategies could be developed to specifically address subtypes of epithelial ovarian cancer
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Racism as a determinant of health: a systematic review and meta-analysis
Despite a growing body of epidemiological evidence in recent years documenting the health impacts of racism, the cumulative evidence base has yet to be synthesized in a comprehensive meta-analysis focused specifically on racism as a determinant of health. This meta-analysis reviewed the literature focusing on the relationship between reported racism and mental and physical health outcomes. Data from 293 studies reported in 333 articles published between 1983 and 2013, and conducted predominately in the U.S., were analysed using random effects models and mean weighted effect sizes. Racism was associated with poorer mental health (negative mental health: r = -.23, 95% CI [-.24,-.21], k = 227; positive mental health: r = -.13, 95% CI [-.16,-.10], k = 113), including depression, anxiety, psychological stress and various other outcomes. Racism was also associated with poorer general health (r = -.13 (95% CI [-.18,-.09], k = 30), and poorer physical health (r = -.09, 95% CI [-.12,-.06], k = 50). Moderation effects were found for some outcomes with regard to study and exposure characteristics. Effect sizes of racism on mental health were stronger in cross-sectional compared with longitudinal data and in non-representative samples compared with representative samples. Age, sex, birthplace and education level did not moderate the effects of racism on health. Ethnicity significantly moderated the effect of racism on negative mental health and physical health: the association between racism and negative mental health was significantly stronger for Asian American and Latino(a) American participants compared with African American participants, and the association between racism and physical health was significantly stronger for Latino(a) American participants compared with African American participants.<br /
Diagnostic criteria and follow-up in neuroendocrine cell hyperplasia of infancy: a case series
Minimal change in structural, functional and inflammatory markers of lung disease in newborn screened infants with cystic fibrosis at one year
BACKGROUND: With the widespread introduction of newborn screening for cystic fibrosis (CF), there has been considerable emphasis on the need to develop objective markers of lung health that can be used during infancy. We hypothesised that in a newborn screened (NBS) UK cohort, evidence of airway inflammation and infection at one year would be associated with adverse structural and functional outcomes at the same age. METHODS: Infants underwent lung function testing, chest CT scan and bronchoscopy with bronchoalveolar lavage (BAL) at 1 year of age when clinically well. Microbiology cultures were also available from routine cough swabs. RESULTS: 65 infants had lung function, CT and BAL. Mean (SD) lung clearance index and forced expiratory volume in 0.5 s z-scores were 0.9(1.2) and -0.6(1.1) respectively; median Brody II CF-CT air trapping score on chest CT =0 (interquartile range 0-1, maximum possible score 27). Infants isolating any significant pathogen by 1 yr of age had higher LCI z-score (mean difference 0.9; 95%CI:0.4-1.4; p = 0.001) and a trend towards higher air trapping scores on CT (p = 0.06). BAL neutrophil elastase was detectable in 23% (10/43) infants in whom BAL supernatant was available. This did not relate to air trapping score on CT. CONCLUSIONS: In this UK NBS cohort at one year of age, lung and airway damage is much milder and associations between inflammation, abnormal physiology and structural changes were at best weak, contrary to our hypothesis and previously published reports. Continued follow-up will clarify longer term implications of these very mild structural, functional and inflammatory changes
- …
