2,447 research outputs found
Relative commutants of strongly self-absorbing C*-algebras
The relative commutant of a strongly self-absorbing
algebra is indistinguishable from its ultrapower . This
applies both to the case when is the hyperfinite II factor and to the
case when it is a strongly self-absorbing C*-algebra. In the latter case we
prove analogous results for and reduced powers
corresponding to other filters on . Examples of algebras with
approximately inner flip and approximately inner half-flip are provided,
showing the optimality of our results. We also prove that strongly
self-absorbing algebras are smoothly classifiable, unlike the algebras with
approximately inner half-flip.Comment: Some minor correction
Atomic excitation during recollision-free ultrafast multi-electron tunnel ionization
Modern intense ultrafast pulsed lasers generate an electric field of
sufficient strength to permit tunnel ionization of the valence electrons in
atoms. This process is usually treated as a rapid succession of isolated
events, in which the states of the remaining electrons are neglected. Such
electronic interactions are predicted to be weak, the exception being
recollision excitation and ionization caused by linearly-polarized radiation.
In contrast, it has recently been suggested that intense field ionization may
be accompanied by a two-stage `shake-up' reaction. Here we report a unique
combination of experimental techniques that enables us to accurately measure
the tunnel ionization probability for argon exposed to 50 femtosecond laser
pulses. Most significantly for the current study, this measurement is
independent of the optical focal geometry, equivalent to a homogenous electric
field. Furthermore, circularly-polarized radiation negates recollision. The
present measurements indicate that tunnel ionization results in simultaneous
excitation of one or more remaining electrons through shake-up. From an atomic
physics standpoint, it may be possible to induce ionization from specific
states, and will influence the development of coherent attosecond XUV radiation
sources. Such pulses have vital scientific and economic potential in areas such
as high-resolution imaging of in-vivo cells and nanoscale XUV lithography.Comment: 17 pages, 4 figures, original format as accepted by Nature Physic
Spatially Explicit Data: Stewardship and Ethical Challenges in Science
Scholarly communication is at an unprecedented turning point created in part by the increasing saliency of data stewardship and data sharing. Formal data management plans represent a new emphasis in research, enabling access to data at higher volumes and more quickly, and the potential for replication and augmentation of existing research. Data sharing has recently transformed the practice, scope, content, and applicability of research in several disciplines, in particular in relation to spatially specific data. This lends exciting potentiality, but the most effective ways in which to implement such changes, particularly for disciplines involving human subjects and other sensitive information, demand consideration. Data management plans, stewardship, and sharing, impart distinctive technical, sociological, and ethical challenges that remain to be adequately identified and remedied. Here, we consider these and propose potential solutions for their amelioration
The Underestimation Of Egocentric Distance: Evidence From Frontal Matching Tasks
There is controversy over the existence, nature, and cause of error in egocentric distance judgments. One proposal is that the systematic biases often found in explicit judgments of egocentric distance along the ground may be related to recently observed biases in the perceived declination of gaze (Durgin & Li, Attention, Perception, & Psychophysics, in press), To measure perceived egocentric distance nonverbally, observers in a field were asked to position themselves so that their distance from one of two experimenters was equal to the frontal distance between the experimenters. Observers placed themselves too far away, consistent with egocentric distance underestimation. A similar experiment was conducted with vertical frontal extents. Both experiments were replicated in panoramic virtual reality. Perceived egocentric distance was quantitatively consistent with angular bias in perceived gaze declination (1.5 gain). Finally, an exocentric distance-matching task was contrasted with a variant of the egocentric matching task. The egocentric matching data approximate a constant compression of perceived egocentric distance with a power function exponent of nearly 1; exocentric matches had an exponent of about 0.67. The divergent pattern between egocentric and exocentric matches suggests that they depend on different visual cues
Exclusive Production of Higgs Bosons in Hadron Colliders
We study the exclusive, double--diffractive production of the Standard Model
Higgs particle in hadronic collisions at LHC and FNAL (upgraded) energies. Such
a mechanism would provide an exceptionally clean signal for experimental
detection in which the usual penalty for triggering on the rare decays of the
Higgs could be avoided. In addition, because of the color singlet nature of the
hard interaction, factorization is expected to be preserved, allowing the
cross--section to be related to similar hard--diffractive events at HERA.
Starting from a Fock state expansion in perturbative QCD, we obtain an estimate
for the cross section in terms of the gluon structure functions squared of the
colliding hadrons. Unfortunately, our estimates yield a production rate well
below what is likely to be experimentally feasible.Comment: 17 pages, RevTeX file, four uufiled PostScript figures. UMPP #94-177.
(Revised version. Some mistakenly missing Feynman diagrams are now added.
Results do not change qualitatively. Paper reorganized.
A Prospective Study of the Association of Metacognitive Beliefs and Processes with Persistent Emotional Distress After Diagnosis of Cancer
Two hundred and six patients, diagnosed with primary breast or prostate cancer completed self-report questionnaires on two occasions: before treatment (T1) and 12 months later (T2). The questionnaires included: the Hospital Anxiety and Depression Scale; Impact of Events Scale; the Metacognitions Questionnaire-30 (MCQ-30) and the Illness Perceptions Questionnaire-revised. A series of regression analyses indicated that metacognitive beliefs at T1 predicted between 14 and 19 % of the variance in symptoms of anxiety, depression and trauma at T2 after controlling for age and gender. For all three outcomes, the MCQ-30 subscale ‘negative beliefs about worry’ made the largest individual contribution with ‘cognitive confidence’ also contributing in each case. For anxiety, a third metacognitive variable, ‘positive beliefs about worry’ also predicted variance in T2 symptoms. In addition, hierarchical analyses indicated that metacognitive beliefs explained a small but significant amount of variance in T2 anxiety (2 %) and T2 depression (4 %) over and above that explained by demographic variables, T1 symptoms and T1 illness perceptions. The findings suggest that modifying metacognitive beliefs and processes has the potential to alleviate distress associated with cancer
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Does home neighbourhood supportiveness influence the location more than volume of adolescent's physical activity? An observational study using Global Positioning Systems
Background: Environmental characteristics of home neighbourhoods are hypothesised to be associated with residents’ physical activity levels, yet many studies report only weak or equivocal associations. We theorise that this may be because neighbourhood characteristics influence the location of activity more than the volume. Using a sample of UK adolescents, we examine the role of home neighbourhood supportiveness for physical activity, both in terms of volume of activity undertaken and a measure of proximity to home at which activity takes place. Methods: Data were analysed from 967 adolescents living in and around the city of Bristol, UK. Each participant wore an accelerometer and a GPS device for seven days during school term time. These data were integrated into a Geographical Information System containing information on the participants’ home neighbourhoods and measures of environmental supportiveness. We then identified the amount of out-of-school activity of different intensities that adolescents undertook inside their home neighbourhood and examined how this related to home neighbourhood supportiveness. Results: We found that living in a less supportive neighbourhood did not negatively impact the volume of physical activity that adolescents undertook. Indeed these participants recorded similar amounts of activity (e.g. 20.5 mins per day of moderate activity at weekends) as those in more supportive neighbourhoods (18.6 mins per day). However, the amount of activity adolescents undertook inside their home neighbourhood did differ according to supportiveness; those living in less supportive locations had lower odds of recording activity inside their home neighbourhood. This was observed across all intensities of activity including sedentary, light, moderate, and vigorous. Conclusions: Our findings suggest that the supportiveness of the neighbourhood around home may have a greater influence on the location of physical activity than the volume undertaken. This finding is at odds with the premise of the socio-ecological models of physical activity that have driven this research field for the last two decades, and has implications for future research, as by simply measuring volumes of activity we may be underestimating the impact of the environment on physical activity behaviours
Magnetorheology in an aging, yield stress matrix fluid
Field-induced static and dynamic yield stresses are explored for magnetorheological (MR) suspensions in an aging, yield stress matrix fluid composed of an aqueous dispersion of Laponite® clay. Using a custom-built magnetorheometry fixture, the MR response is studied for magnetic field strengths up to 1 T and magnetic particle concentrations up to 30 v%. The yield stress of the matrix fluid, which serves to inhibit sedimentation of dispersed carbonyl iron magnetic microparticles, is found to have a negligible effect on the field-induced static yield stress for sufficient applied fields, and good agreement is observed between field-induced static and dynamic yield stresses for all but the lowest field strengths and particle concentrations. These results, which generally imply a dominance of inter-particle dipolar interactions over the matrix fluid yield stress, are analyzed by considering a dimensionless magnetic yield parameter that quantifies the balance of stresses on particles. By characterizing the applied magnetic field in terms of the average particle magnetization, a rheological master curve is generated for the field-induced static yield stress that indicates a concentration–magnetization superposition. The results presented herein will provide guidance to formulators of MR fluids and designers of MR devices who require a field-induced static yield stress and a dispersion that is essentially indefinitely stable to sedimentation.Petroleum Research Fund (ACS-PRF Grant No. 49956-ND9)American Chemical Society (ACS-PRF Grant No. 49956-ND9
The effect of lengthening contractions on neuromuscular junction structure in adult and old mice
Skeletal muscles of old mice demonstrate a profound inability to regenerate fully following damage. Such a failure could be catastrophic to older individuals where muscle loss is already evident. Degeneration and regeneration of muscle fibres following contraction-induced injury in adult and old mice are well characterised, but little is known about the accompanying changes in motor neurons and neuromuscular junctions (NMJs) following this form of injury although defective re-innervation of muscle following contraction-induced damage has been proposed to play a role in sarcopenia. This study visualised and quantified structural changes to motor neurons and NMJs in Extensor digitorum longus (EDL) muscles of adult and old Thy1-YFP transgenic mice during regeneration following contraction-induced muscle damage. Data demonstrated that the damaging contraction protocol resulted in substantial initial disruption to NMJs in muscles of adult mice, which was reversed entirely within 28 days following damage. In contrast, in quiescent muscles of old mice, ∼15 % of muscle fibres were denervated and ∼80 % of NMJs showed disruption. This proportion of denervated and partially denervated fibres remained unchanged following recovery from contraction-induced damage in muscles of old mice although ∼25 % of muscle fibres were completely lost by 28 days post-contractions. Thus, in old mice, the failure to restore full muscle force generation that occurs following damage does not appear to be due to any further deficit in the percentage of disrupted NMJs, but appears to be due, at least in part, to the complete loss of muscle fibres following damag
- …
