271 research outputs found
Quantitative trait loci for bone traits segregating independently of those for growth in an F-2 broiler X layer cross
An F broiler-layer cross was phenotyped for 18 skeletal traits at 6, 7 and 9 weeks of age and genotyped with 120 microsatellite markers. Interval mapping identified 61 suggestive and significant QTL on 16 of the 25 linkage groups for 16 traits. Thirty-six additional QTL were identified when the assumption that QTL were fixed in the grandparent lines was relaxed. QTL with large effects on the lengths of the tarsometatarsus, tibia and femur, and the weights of the tibia and femur were identified on GGA4 between 217 and 249 cM. Six QTL for skeletal traits were identified that did not co-locate with genome wide significant QTL for body weight and two body weight QTL did not coincide with skeletal trait QTL. Significant evidence of imprinting was found in ten of the QTL and QTL x sex interactions were identified for 22 traits. Six alleles from the broiler line for weight- and size-related skeletal QTL were positive. Negative alleles for bone quality traits such as tibial dyschondroplasia, leg bowing and tibia twisting generally originated from the layer line suggesting that the allele inherited from the broiler is more protective than the allele originating from the layer
Quantum theory of massless (p,0)-forms
We describe the quantum theory of massless (p,0)-forms that satisfy a
suitable holomorphic generalization of the free Maxwell equations on Kaehler
spaces. These equations arise by first-quantizing a spinning particle with a
U(1)-extended local supersymmetry on the worldline. Dirac quantization of the
spinning particle produces a physical Hilbert space made up of (p,0)-forms that
satisfy holomorphic Maxwell equations coupled to the background Kaehler
geometry, containing in particular a charge that measures the amount of
coupling to the U(1) part of the U(d) holonomy group of the d-dimensional
Kaehler space. The relevant differential operators appearing in these equations
are a twisted exterior holomorphic derivative and its hermitian conjugate
(twisted Dolbeault operators with charge q). The particle model is used to
obtain a worldline representation of the one-loop effective action of the
(p,0)-forms. This representation allows to compute the first few heat kernel
coefficients contained in the local expansion of the effective action and to
derive duality relations between (p,0) and (d-p-2,0)-forms that include a
topological mismatch appearing at one-loop.Comment: 32 pages, 3 figure
On duality symmetry in perturbative quantum theory
Non-compact symmetries of extended 4d supergravities involve duality
rotations of vectors and thus are not manifest off-shell invariances in
standard "second-order" formulation. To study how such symmetries are realised
in the quantum theory we consider examples in 2 dimensions where vector-vector
duality is replaced by scalar-scalar one. Using a "doubled" formulation, where
fields and their momenta are treated on an equal footing and the duality
becomes a manifest symmetry of the action (at the expense of Lorentz symmetry),
we argue that the corresponding on-shell quantum effective action or S-matrix
are duality symmetric as well as Lorentz invariant. The simplest case of
discrete Z_2 duality corresponds to a symmetry of the S-matrix under flipping
the sign of the negative-chirality scalars in 2 dimensions or phase rotations
of chiral (definite-helicity) parts of vectors in 4 dimensions. We also briefly
discuss some 4d models and comment on implications of our analysis for extended
supergravities.Comment: 21 pages, Latex v2: comments and references added v3: references and
minor comments adde
Sigma-model for Generalized Composite p-branes
A multidimensional gravitational model containing several dilatonic scalar
fields and antisymmetric forms is considered. The manifold is chosen in the
form M = M_0 x M_1 x ... x M_n, where M_i are Einstein spaces (i > 0). The
block-diagonal metric is chosen and all fields and scale factors of the metric
are functions on M_0. For the forms composite (electro-magnetic) p-brane ansatz
is adopted. The model is reduced to gravitating self-interacting sigma-model
with certain constraints. In pure electric and magnetic cases the number of
these constraints is m(m - 1)/2 where m is number of 1-dimensional manifolds
among M_i. In the "electro-magnetic" case for dim M_0 = 1, 3 additional m
constraints appear. A family of "Majumdar-Papapetrou type" solutions governed
by a set of harmonic functions is obtained, when all factor-spaces M_k are
Ricci-flat. These solutions are generalized to the case of non-Ricci-flat M_0
when also some additional "internal" Einstein spaces of non-zero curvature are
added to M. As an example exact solutions for D = 11 supergravity and related
12-dimensional theory are presented.Comment: 33 pages, Latex. Some corrections and rearrangements are mad
Holographic Vitrification
We establish the existence of stable and metastable stationary black hole
bound states at finite temperature and chemical potentials in global and planar
four-dimensional asymptotically anti-de Sitter space. We determine a number of
features of their holographic duals and argue they represent structural
glasses. We map out their thermodynamic landscape in the probe approximation,
and show their relaxation dynamics exhibits logarithmic aging, with aging rates
determined by the distribution of barriers.Comment: 100 pages, 25 figure
Logarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function
We evaluate the one loop determinant of matter multiplet fields of N=4
supergravity in the near horizon geometry of quarter BPS black holes, and use
it to calculate logarithmic corrections to the entropy of these black holes
using the quantum entropy function formalism. We show that even though
individual fields give non-vanishing logarithmic contribution to the entropy,
the net contribution from all the fields in the matter multiplet vanishes. Thus
logarithmic corrections to the entropy of quarter BPS black holes, if present,
must be independent of the number of matter multiplet fields in the theory.
This is consistent with the microscopic results. During our analysis we also
determine the complete spectrum of small fluctuations of matter multiplet
fields in the near horizon geometry.Comment: LaTeX file, 52 pages; v2: minor corrections, references adde
Brane-World Gravity
The observable universe could be a 1+3-surface (the "brane") embedded in a
1+3+\textit{d}-dimensional spacetime (the "bulk"), with Standard Model
particles and fields trapped on the brane while gravity is free to access the
bulk. At least one of the \textit{d} extra spatial dimensions could be very
large relative to the Planck scale, which lowers the fundamental gravity scale,
possibly even down to the electroweak ( TeV) level. This revolutionary
picture arises in the framework of recent developments in M theory. The
1+10-dimensional M theory encompasses the known 1+9-dimensional superstring
theories, and is widely considered to be a promising potential route to quantum
gravity. At low energies, gravity is localized at the brane and general
relativity is recovered, but at high energies gravity "leaks" into the bulk,
behaving in a truly higher-dimensional way. This introduces significant changes
to gravitational dynamics and perturbations, with interesting and potentially
testable implications for high-energy astrophysics, black holes, and cosmology.
Brane-world models offer a phenomenological way to test some of the novel
predictions and corrections to general relativity that are implied by M theory.
This review analyzes the geometry, dynamics and perturbations of simple
brane-world models for cosmology and astrophysics, mainly focusing on warped
5-dimensional brane-worlds based on the Randall--Sundrum models. We also cover
the simplest brane-world models in which 4-dimensional gravity on the brane is
modified at \emph{low} energies -- the 5-dimensional Dvali--Gabadadze--Porrati
models. Then we discuss co-dimension two branes in 6-dimensional models.Comment: A major update of Living Reviews in Relativity 7:7 (2004)
"Brane-World Gravity", 119 pages, 28 figures, the update contains new
material on RS perturbations, including full numerical solutions of
gravitational waves and scalar perturbations, on DGP models, and also on 6D
models. A published version in Living Reviews in Relativit
Towards a just and fair Internet: applying Rawls’ principles of justice to Internet regulation
I suggest that the social justice issues raised by Internet regulation be exposed and examined by using a methodology adapted from that described by John Rawls in A Theory of Justice. Rawls’ theory uses the hypothetical scenario of people deliberating about the justice of social institutions from the ‘original position’ as a method of removing bias in decision-making about justice. The original position imposes a ‘veil of ignorance’ that hides the particular circumstances of individuals from them so that they will not be influenced by self-interest. I adapt Rawls’ methodology by introducing an abstract description of information technology to those deliberating about justice from within the original position. This abstract description focuses on information devices that users can use to access information (and which may record information about them as well) and information networks that information devices use to communicate. The abstractness of this description prevents the particular characteristics of the Internet and the computing devices in use from influencing the decisions about the just use and regulation of information technology and networks. From this abstract position, the principles of justice that the participants accept for the rest of society will also apply to the computing devices people use to communicate, and to Internet regulatio
Brain Structural Networks Associated with Intelligence and Visuomotor Ability
Increasing evidence indicates that multiple structures in the brain are associated with intelligence
and cognitive function at the network level. The association between the grey matter (GM) structural
network and intelligence and cognition is not well understood. We applied a multivariate approach
to identify the pattern of GM and link the structural network to intelligence and cognitive functions.
Structural magnetic resonance imaging was acquired from 92 healthy individuals. Source-based
morphometry analysis was applied to the imaging data to extract GM structural covariance. We
assessed the intelligence, verbal fluency, processing speed, and executive functioning of the
participants and further investigated the correlations of the GM structural networks with intelligence
and cognitive functions. Six GM structural networks were identified. The cerebello-parietal component
and the frontal component were significantly associated with intelligence. The parietal and frontal
regions were each distinctively associated with intelligence by maintaining structural networks with
the cerebellum and the temporal region, respectively. The cerebellar component was associated
with visuomotor ability. Our results support the parieto-frontal integration theory of intelligence by
demonstrating how each core region for intelligence works in concert with other regions. In addition,
we revealed how the cerebellum is associated with intelligence and cognitive functions
Towards a just and fair Internet: applying Rawls’ principles of justice to Internet regulation
- …
