28 research outputs found
The structure of two new non-centrosymmetric phases of oxygen deficient bismuth manganite
The structure of two new phases in the bismuth manganite system are reported. The phases were determined by electron diffraction studies of two oxygen-deficient bulk samples. The first phase, a minority component of bulk BiMnO2.94 forms a n=2 Ruddlesden-Popper phase with space group Cmc21 . The second phase, from bulk BiMnO2.99 , is an orthorhombic structure
with spacegroup Pmn21 and a unit cell approximately equal to 4 × √ 2 × 2 √ 2 times the parent perovskite cell. Importantly both phases are non-centrosymmetric and offer further potential for multiferroic studies.The authors would like to thank EPSRC for financial support for this work through grant EP/H017712
On the oxidation behavior of titanium within coated nickel-based superalloys
Rutile precipitation within alumina scales grown on coated nickel-based superalloy CMSX-4 has been found to occur preferentially at grain boundaries within the scale. Misorientation analysis using Rodrigues–Frank space has revealed clustering of the misorientation between neighboring grains of corundum and rutile about the established 〈0 0 0 1〉_c{1 1 2¯ 0}_c//〈0 1 0〉_r{1 0 1}_r orientation relationship observed in Ti-containing sapphire crystals. The fraction of interfaces found to exist in this configuration is sufficient to explain the nucleation of rutile from a single corundum grain abutting the rutile grain. The diffusive behavior of Ti has been observed to vary considerably within three commercially used coatings, a plain aluminide coating, a plat-aluminide coating and a diffused platinum coating. Titanium diffusion is enhanced by the presence of Pt. However this did not lead to the precipitation of more rutile, which although observed in all three coatings, was present in sufficient quantity to be detected using XRD only within the plain aluminide coated samples.The work was carried out under the financial support provided by Rolls-Royce plc and Engineering and Physical Sciences Research Councils, UK under the Rolls-Royce/ESPRC Strategic Partnership (EP/M005607/1 & EP/H022309/1). This study was also supported by Nanotechnology Platform Project (NIMS Nanofabrication Platform) sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Financial support was also received from the Seventh Framework Programme of the European Commission: ESTEEM2, contract number 312483. Requests for access to the underlying research data should be directed to the corresponding author and will be considered against commercial interests and data protection.This is the author accepted manuscript. The final version is available from Elsevier at http://www.sciencedirect.com/science/article/pii/S1359645415002281
On the crystallography and composition of topologically close-packed phases in ATI 718Plus®
ATI 718Plus® is a nickel-based superalloy developed to replace Inconel 718 in aero engines for static and rotating applications. Here, the long-term stability of the alloy was studied and it was found that topologically close-packed (TCP) phases can form at the γ-η interface or, less frequently, at grain boundaries. Conventional and scanning transmission electron microscopy techniques were applied to elucidate the crystal structure and composition of these TCP precipitates. The precipitates were found to be tetragonal sigma phase and hexagonal C14 Laves phase, both being enriched in Cr, Co, Fe and Mo though sigma has a higher Cr and lower Nb content. The precipitates were observed to be heavily faulted along multiple planes. In addition, the disorientations between the TCP phases and neighbouring η/γ were determined using scanning precession electron diffraction and evaluated in axis-angle space. This work therefore provides a series of compositional and crystallographic insights that may be used to guide future alloy design.The authors acknowledge Rolls-Royce plc, the EPSRC and the BMWi under grants EP/H022309/1, EP/H500375/1 and 20T0813. P.A.M acknowledges financial support from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement 291522-3DIMAGE, the Seventh Framework Programme of the European Commission: ESTEEM2, contract number 312483. DNJ acknowledges financial support from the University of Cambridge through the Cambridge Home & EU Scholarship scheme and the EPSRC Cambridge NanoDTC EP/L015978/1
Controlled Preparation of Co3O4@porous-SiO2 Nanocomposites for Fischer–Tropsch Synthesis
Aberration-corrected and energy-filtered precession electron diffraction
We report initial findings on improvements to precession electron diffraction (PED) achieved through aberration correction of the probe-forming lens and by energy-filtering. Using current-generation aberration correctors, we show that PED patterns can, in principle, be acquired with sub-nm spatial resolution. We present initial experimental results that illustrate aberration-corrected PED of nanostructured alloys. We show also that zero loss energy filtering minimizes the inelastic background in a PED pattern, important for weak reflections, and leads to an improvement in the refinement of a crystal structure using elastic-only intensities.The authors would like to thank the EPSRC for financial support through grant number EP/H013378, and would like to thanks Rolls Royce plc, Dr Cathie Rae, Olivier Messe and Dr Michael Hardy for use of the nickel-based superalloy sample investigated in this study. PAM thanks the ERC for financial support through grant no. 291522 3DIMAGE
Revisiting metal fluorides as lithium-ion battery cathodes
Metal fluorides, promising lithium-ion battery cathode materials, have been classified as conversion materials due to the reconstructive phase transitions widely presumed to occur upon lithiation. We challenge this view by studying FeF3 using X-ray total scattering and electron diffraction techniques that measure structure over multiple length scales coupled with density functional theory calculations, and by revisiting prior experimental studies of FeF2 and CuF2. Metal fluoride lithiation is instead dominated by diffusion-controlled displacement mechanisms, and a clear topological relationship between the metal fluoride F− sublattices and that of LiF is established. Initial lithiation of FeF3 forms FeF2 on the particle’s surface, along with a cation-ordered and stacking-disordered phase, A-LixFeyF3, which is structurally related to α-/β-LiMn2+Fe3+F6 and which topotactically transforms to B- and then C-LixFeyF3, before forming LiF and Fe. Lithiation of FeF2 and CuF2 results in a buffer phase between FeF2/CuF2 and LiF. The resulting principles will aid future developments of a wider range of isomorphic metal fluorides
