25 research outputs found
The Minimal Scale Invariant Extension of the Standard Model
We perform a systematic analysis of an extension of the Standard Model that
includes a complex singlet scalar field and is scale invariant at the tree
level. We call such a model the Minimal Scale Invariant extension of the
Standard Model (MSISM). The tree-level scale invariance of the model is
explicitly broken by quantum corrections, which can trigger electroweak
symmetry breaking and potentially provide a mechanism for solving the gauge
hierarchy problem. Even though the scale invariant Standard Model is not a
realistic scenario, the addition of a complex singlet scalar field may result
in a perturbative and phenomenologically viable theory. We present a complete
classification of the flat directions which may occur in the classical scalar
potential of the MSISM. After calculating the one-loop effective potential of
the MSISM, we investigate a number of representative scenarios and determine
their scalar boson mass spectra, as well as their perturbatively allowed
parameter space compatible with electroweak precision data. We discuss the
phenomenological implications of these scenarios, in particular, whether they
realize explicit or spontaneous CP violation, neutrino masses or provide dark
matter candidates. In particular, we find a new minimal scale-invariant model
of maximal spontaneous CP violation which can stay perturbative up to
Planck-mass energy scales, without introducing an unnaturally large hierarchy
in the scalar-potential couplings.Comment: 71 pages, 34 eps figures, numerical error corrected, clarifying
comments adde
Neutrinoless double beta decay in seesaw models
We study the general phenomenology of neutrinoless double beta decay in
seesaw models. In particular, we focus on the dependence of the neutrinoless
double beta decay rate on the mass of the extra states introduced to account
for the Majorana masses of light neutrinos. For this purpose, we compute the
nuclear matrix elements as functions of the mass of the mediating fermions and
estimate the associated uncertainties. We then discuss what can be inferred on
the seesaw model parameters in the different mass regimes and clarify how the
contribution of the light neutrinos should always be taken into account when
deriving bounds on the extra parameters. Conversely, the extra states can also
have a significant impact, cancelling the Standard Model neutrino contribution
for masses lighter than the nuclear scale and leading to vanishing neutrinoless
double beta decay amplitudes even if neutrinos are Majorana particles. We also
discuss how seesaw models could reconcile large rates of neutrinoless double
beta decay with more stringent cosmological bounds on neutrino masses.Comment: 34 pages, 5 eps figures and 1 axodraw figure. Final version published
in JHEP. NME results available in Appendi
The consequences of a new software package for the quantification of gated-SPECT myocardial perfusion studies
Semiquantitative analysis of myocardial perfusion scintigraphy (MPS) has reduced inter- and intraobserver variability, and enables researchers to compare parameters in the same patient over time, or between groups of patients. There are several software packages available that are designed to process MPS data and quantify parameters. In this study the performances of two systems, quantitative gated SPECT (QGS) and 4D-MSPECT, in the processing of clinical patient data and phantom data were compared. The clinical MPS data of 148 consecutive patients were analysed using QGS and 4D-MSPECT to determine the end-diastolic volume, end-systolic volume and left ventricular ejection fraction. Patients were divided into groups based on gender, body mass index, heart size, stressor type and defect type. The AGATE dynamic heart phantom was used to provide reference values for the left ventricular ejection fraction. Although the correlations were excellent (correlation coefficients 0.886 to 0.980) for all parameters, significant differences (p < 0.001) were found between the systems. Bland-Altman plots indicated that 4D-MSPECT provided overall higher values of all parameters than QGS. These differences between the systems were not significant in patients with a small heart (end-diastolic volume < 70 ml). Other clinical factors had no direct influence on the relationship. Additionally, the phantom data indicated good linear responses of both systems. The discrepancies between these software packages were clinically relevant, and influenced by heart size. The possibility of such discrepancies should be taken into account when a new quantitative software system is introduced, or when multiple software systems are used in the same institution.Vascular Biology and Interventio
Normal values for nuclear cardiology: Japanese databases for myocardial perfusion, fatty acid and sympathetic imaging and left ventricular function
Myocardial normal databases for stress myocardial perfusion study have been created by the Japanese Society of Nuclear Medicine Working Group. The databases comprised gender-, camera rotation range- and radiopharmaceutical-specific data-sets from multiple institutions, and normal database files were created for installation in common nuclear cardiology software. Based on the electrocardiography-gated single-photon emission computed tomography (SPECT), left ventricular function, including ventricular volumes, systolic and diastolic functions and systolic wall thickening were also analyzed. Normal databases for fatty acid imaging using 123I-beta-methyl-iodophenyl-pentadecanoic acid and sympathetic imaging using 123I-meta-iodobenzylguanidine were also examined. This review provides lists and overviews of normal values for myocardial SPECT and ventricular function in a Japanese population. The population-specific approach is a key factor for proper diagnostic and prognostic evaluation
