37 research outputs found
Melanocortin-1 Receptor, Skin Cancer and Phenotypic Characteristics (M-SKIP) Project: Study Design and Methods for Pooling Results of Genetic Epidemiological Studies
Background: For complex diseases like cancer, pooled-analysis of individual data represents a powerful tool to investigate the joint contribution of genetic, phenotypic and environmental factors to the development of a disease. Pooled-analysis of epidemiological studies has many advantages over meta-analysis, and preliminary results may be obtained faster and with lower costs than with prospective consortia. Design and methods: Based on our experience with the study design of the Melanocortin-1 receptor (MC1R) gene, SKin cancer and Phenotypic characteristics (M-SKIP) project, we describe the most important steps in planning and conducting a pooled-analysis of genetic epidemiological studies. We then present the statistical analysis plan that we are going to apply, giving particular attention to methods of analysis recently proposed to account for between-study heterogeneity and to explore the joint contribution of genetic, phenotypic and environmental factors in the development of a disease. Within the M-SKIP project, data on 10,959 skin cancer cases and 14,785 controls from 31 international investigators were checked for quality and recoded for standardization. We first proposed to fit the aggregated data with random-effects logistic regression models. However, for the M-SKIP project, a two-stage analysis will be preferred to overcome the problem regarding the availability of different study covariates. The joint contribution of MC1R variants and phenotypic characteristics to skin cancer development will be studied via logic regression modeling. Discussion: Methodological guidelines to correctly design and conduct pooled-analyses are needed to facilitate application of such methods, thus providing a better summary of the actual findings on specific fields
Efficient Utilization of Rare Variants for Detection of Disease-Related Genomic Regions
When testing association between rare variants and diseases, an efficient analytical approach involves considering a set of variants in a genomic region as the unit of analysis. One factor complicating this approach is that the vast majority of rare variants in practical applications are believed to represent background neutral variation. As a result, analyzing a single set with all variants may not represent a powerful approach. Here, we propose two alternative strategies. In the first, we analyze the subsets of rare variants exhaustively. In the second, we categorize variants selectively into two subsets: one in which variants are overrepresented in cases, and the other in which variants are overrepresented in controls. When the proportion of neutral variants is moderate to large we show, by simulations, that the both proposed strategies improve the statistical power over methods analyzing a single set with total variants. When applied to a real sequencing association study, the proposed methods consistently produce smaller p-values than their competitors. When applied to another real sequencing dataset to study the difference of rare allele distributions between ethnic populations, the proposed methods detect the overrepresentation of variants between the CHB (Chinese Han in Beijing) and YRI (Yoruba people of Ibadan) populations with small p-values. Additional analyses suggest that there is no difference between the CHB and CHD (Chinese Han in Denver) datasets, as expected. Finally, when applied to the CHB and JPT (Japanese people in Tokyo) populations, existing methods fail to detect any difference, while it is detected by the proposed methods in several regions
ADAM33, a New Candidate for Psoriasis Susceptibility
Psoriasis is a chronic skin disorder with multifactorial etiology. In a recent study, we reported results of a genome-wide scan on 46 French extended families presenting with plaque psoriasis. In addition to unambiguous linkage to the major susceptibility locus PSORS1 on Chromosome 6p21, we provided evidence for a susceptibility locus on Chromosome 20p13. To follow up this novel psoriasis susceptibility locus we used a family-based association test (FBAT) for an association scan over the 17 Mb candidate region. A total of 85 uncorrelated SNP markers located in 65 genes of the region were initially investigated in the same set of large families used for the genome wide search, which consisted of 295 nuclear families. When positive association was obtained for a SNP, candidate genes nearby were explored more in detail using a denser set of SNPs. Thus, the gene ADAM33 was found to be significantly associated with psoriasis in this family set (The best association was on a 3-SNP haplotype P = 0.00004, based on 1,000,000 permutations). This association was independent of PSORS1. ADAM33 has been previously associated with asthma, which demonstrates that immune system diseases may be controlled by common susceptibility genes with general effects on dermal inflammation and immunity. The identification of ADAM33 as a psoriasis susceptibility gene identified by positional cloning in an outbred population should provide insights into the pathogenesis and natural history of this common disease
Genetic polymorphisms of MMP1, MMP3 and MMP7 gene promoter and risk of colorectal adenoma
BACKGROUND: Matrix metalloproteinases (MMP) have been shown to play a role in colorectal cancer (CRC). More recently, MMP1, MMP3 and MMP7 functional gene promoter polymorphisms have been found to be associated with CRC occurrence and prognosis. To document the role of MMP polymorphisms in the early step of colorectal carcinogenesis, we investigated their association with colorectal adenoma risk in a case-control study comprising 295 patients with large adenomas (LA), 302 patients with small adenomas (SA) and 568 polyp-free (PF) controls. METHODS: Patients were genotyped using automated fragment analysis for MMP1 -1607 ins/del G and MMP3 -1612 ins/delA (MMP3.1) polymorphisms and allelic discrimination assay for MMP3 -709 A/G (MMP3.2) and MMP7 -181 A/G polymorphisms. Association between MMP genotypes and colorectal adenomas was first tested for each polymorphism separately and then for combined genotypes using the combination test. Adjustment on relevant variables and estimation of odds ratios were performed using unconditional logistic regression. RESULTS: No association was observed between the polymorphisms and LA when compared to PF or SA. When comparing SA to PF controls, analysis revealed a significant association between MMP3 -1612 ins/delA polymorphism and SA with an increased risk associated with the 6A/6A genotype (OR = 1.67, 95%CI: 1.20–2.34). Using the combination test, the best association was found for MMP3.1-MMP1 (p = 0.001) with an OR of 1.88 (95%CI: 1.08–3.28) for the combined genotype 2G/2G-6A/6A estimated by logistic regression. CONCLUSION: These data show a relation between MMP1 -1607 ins/del G and MMP3 -1612 ins/delA combined polymorphisms and risk of SA, suggesting their potential role in the early steps of colorectal carcinogenesis
Genomewide association study for onset age in Parkinson disease
<p>Abstract</p> <p>Background</p> <p>Age at onset in Parkinson disease (PD) is a highly heritable quantitative trait for which a significant genetic influence is supported by multiple segregation analyses. Because genes associated with onset age may represent invaluable therapeutic targets to delay the disease, we sought to identify such genetic modifiers using a genomewide association study in familial PD. There have been previous genomewide association studies (GWAS) to identify genes influencing PD susceptibility, but this is the first to identify genes contributing to the variation in onset age.</p> <p>Methods</p> <p>Initial analyses were performed using genotypes generated with the Illumina HumanCNV370Duo array in a sample of 857 unrelated, familial PD cases. Subsequently, a meta-analysis of imputed SNPs was performed combining the familial PD data with that from a previous GWAS of 440 idiopathic PD cases. The SNPs from the meta-analysis with the lowest p-values and consistency in the direction of effect for onset age were then genotyped in a replication sample of 747 idiopathic PD cases from the Parkinson Institute Biobank of Milan, Italy.</p> <p>Results</p> <p>Meta-analysis across the three studies detected consistent association (p < 1 × 10<sup>-5</sup>) with five SNPs, none of which reached genomewide significance. On chromosome 11, the SNP with the lowest p-value (rs10767971; p = 5.4 × 10<sup>-7</sup>) lies between the genes <it>QSER1 </it>and <it>PRRG4</it>. Near the PARK3 linkage region on chromosome 2p13, association was observed with a SNP (rs7577851; p = 8.7 × 10<sup>-6</sup>) which lies in an intron of the <it>AAK1 </it>gene. This gene is closely related to <it>GAK</it>, identified as a possible PD susceptibility gene in the GWAS of the familial PD cases.</p> <p>Conclusion</p> <p>Taken together, these results suggest an influence of genes involved in endocytosis and lysosomal sorting in PD pathogenesis.</p
A data-driven pipeline to extract potential side effects through co-prescription analysis: application to a cohort study of 2,010 patients taking hydroxychloroquine with an 11-year follow-up
ABSTRACTContextReal-life data consist of exhaustive and unbiased data to study drug-safety profiles but are underused because of their complex temporality (i.e., safety depends on the dose, timing, and duration of treatment) and the considerable number of potential side effects to study. We aimed to create a pipeline that manages the complex temporality of real-life data using a data-driven strategy (i.e., without any hypothesis on the potential side effects to search for) to highlight the safety profile of a given drug. We used hydroxychloroquine (HCQ) and its co-prescription in a real-life database to illustrate this pipeline.MethodsWe incorporated a weighted cumulative exposure statistical model into a data-driven strategy. This pipeline makes it possible to highlight both long-term and short-term side effects, while avoiding false positives due to the natural course of the underlying disease. We applied the proposed pipeline to a cohort of 2,010 patients with a prescription of HCQ and used their drug prescription as the source of data to highlight the HCQ safety profile.ResultsThe proposed pipeline introduces a bootstrap strategy into weighted cumulative-exposure statistics estimates to highlight significant drug signals. As applied to HCQ, the proposed pipeline showed nine drugs to be significantly associated with HCQ exposure. Of note, one of them has therapeutic indications for known HCQ side effects. Other associations could be explained by therapeutic indications linked to conditions associated with HCQ indications in France.ConclusionWe propose a data-driven pipeline that makes it possible to provide a broad picture of the side effects of a given drug. It would be informative to pursue the development of this pipeline using other sources of data.</jats:sec
A data-driven pipeline to extract potential adverse drug reactions through prescription, procedures and medical diagnoses analysis: application to a cohort study of 2,010 patients taking hydroxychloroquine with an 11-year follow-up
Abstract
Context
Real-life data consist of exhaustive data which are not subject to selection bias. These data enable to study drug-safety profiles but are underused because of their temporality, necessitating complex models (i.e., safety depends on the dose, timing, and duration of treatment). We aimed to create a data-driven pipeline strategy that manages the complex temporality of real-life data to highlight the safety profile of a given drug.
Methods
We proposed to apply the weighted cumulative exposure (WCE) statistical model to all health events occurring after a drug introduction (in this paper HCQ) and performed bootstrap to select relevant diagnoses, drugs and interventions which could reflect an adverse drug reactions (ADRs). We applied this data-driven pipeline on a French national medico-administrative database to extract the safety profile of hydroxychloroquine (HCQ) from a cohort of 2,010 patients.
Results
The proposed method selected eight drugs (metopimazine, anethole trithione, tropicamide, alendronic acid & colecalciferol, hydrocortisone, chlormadinone, valsartan and tixocortol), twelve procedures (six ophthalmic procedures, two dental procedures, two skin lesions procedures and osteodensitometry procedure) and two medical diagnoses (systemic lupus erythematous, unspecified and discoid lupus erythematous) to be significantly associated with HCQ exposure.
Conclusion
We provide a method extracting the broad spectrum of diagnoses, drugs and interventions associated to any given drug, potentially highlighting ADRs. Applied to hydroxychloroquine, this method extracted among others already known ADRs.
</jats:sec
Additional file 1 of A data-driven pipeline to extract potential adverse drug reactions through prescription, procedures and medical diagnoses analysis: application to a cohort study of 2,010 patients taking hydroxychloroquine with an 11-year follow-up
Additional file 1: Appendix 1. ATC Class, medical diagnoses and procedures associated withhydroxychloroquine prescription in the WCE model. Appendix 2: Risk function of two highestrisk ratios. Appendix 3: ATC Class and procedures associated withhydroxychloroquine prescription in the SCCO model
Male and female differential reproductive rate could explain parental transmission asymmetry of mutation origin in Hirschsprung disease
Hirschsprung disease (HSCR, aganglionic megacolon) is a complex and heterogeneous disease with an incidence of 1 in 5000 live births. Despite the multifactorial determination of HSCR in the vast majority of cases, there is a monogenic subgroup for which private rare RET coding sequence mutations with high penetrance are found (45% of HSCR familial cases). An asymmetrical parental origin is observed for RET coding sequence mutations with a higher maternal inheritance. A parent-of-origin effect is usually assumed. Here we show that a differential reproductive rate for males and females also leads to an asymmetrical parental origin, which was never considered as a possible explanation till now. In the case of HSCR, we show a positive association between penetrance of the mutation and parental transmission asymmetry: no parental transmission asymmetry is observed in sporadic RET CDS mutation carrier cases for which penetrance of the mutation is low, whereas a parental transmission asymmetry is observed in affected sib-pairs for which penetrance of the mutation is higher. This allows us to conclude that the explanation for this parental asymmetry is that more severe mutations have resulted in a differential reproductive rate between male and female carriers. © 2012 Macmillan Publishers Limited All rights reserved.link_to_subscribed_fulltex
