513 research outputs found
Flow boiling heat transfer of refrigerant R-134a in copper microchannel heat sink
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.In this paper we present experimental data on heat transfer and pressure drop characteristics at flow boiling of refrigerant R-134a in a horizontal microchannel heat sink. The primary objective of this study is to establish experimentally how the local heat transfer coefficient and pressure drop correlate with the heat flux, mass flux and vapor quality. The copper plate of microchannel heat sink contains 21 microchannels with 335x930 m2 cross-section. The microchannel plate and heating block were divided by the partition wall for the local heat flux measurements. Distribution of local heat transfer coefficients along the length and width of the microchannel plate were measured in the range of external heat fluxes from 50 to 500 kW/m2; the mass flux was varied within 200-600 kg/m2s, and pressure was varied within 6-16 bar. The obvious impact of heat flux on the magnitude of heat transfer coefficient was observed. It shows that nucleate boiling is the dominant mechanism for heat transfer. The new model of flow boiling heat transfer, which accounts nucleate boiling suppression and liquid film evaporation, was proposed and verified experimentally in this paper
Prospects for terahertz imaging the human skin cancer with the help of gold-nanoparticles-based terahertz-to-infrared converter
The design is suggested, and possible operation parameters are discussed, of
an instrument to inspect a skin cancer tumour in the terahertz (THz) range,
transferring the image into the infrared (IR) and making it visible with the
help of standard IR camera. The central element of the device is the THz-to-IR
converter, a Teflon or silicon film matrix with embedded 8.5 nm diameter gold
nanoparticles. The use of external THz source for irradiating the biological
tissue sample is presumed. The converter's temporal characteristics enable its
performance in a real-time scale. The details of design suited for the
operation in transmission mode (in vitro) or on the human skin in reflection
mode {in vivo) are specified.Comment: To be published in the proceedings of the FANEM2018 workshop - Minsk,
3-5 June 201
Theory of differential inclusions and its application in mechanics
The following chapter deals with systems of differential equations with
discontinuous right-hand sides. The key question is how to define the solutions
of such systems. The most adequate approach is to treat discontinuous systems
as systems with multivalued right-hand sides (differential inclusions). In this
work three well-known definitions of solution of discontinuous system are
considered. We will demonstrate the difference between these definitions and
their application to different mechanical problems. Mathematical models of
drilling systems with discontinuous friction torque characteristics are
considered. Here, opposite to classical Coulomb symmetric friction law, the
friction torque characteristic is asymmetrical. Problem of sudden load change
is studied. Analytical methods of investigation of systems with such
asymmetrical friction based on the use of Lyapunov functions are demonstrated.
The Watt governor and Chua system are considered to show different aspects of
computer modeling of discontinuous systems
Hidden attractors in fundamental problems and engineering models
Recently a concept of self-excited and hidden attractors was suggested: an
attractor is called a self-excited attractor if its basin of attraction
overlaps with neighborhood of an equilibrium, otherwise it is called a hidden
attractor. For example, hidden attractors are attractors in systems with no
equilibria or with only one stable equilibrium (a special case of
multistability and coexistence of attractors). While coexisting self-excited
attractors can be found using the standard computational procedure, there is no
standard way of predicting the existence or coexistence of hidden attractors in
a system. In this plenary survey lecture the concept of self-excited and hidden
attractors is discussed, and various corresponding examples of self-excited and
hidden attractors are considered
Using the MitoB method to assess levels of reactive oxygen species in ecological studies of oxidative stress
In recent years evolutionary ecologists have become increasingly interested in the effects of reactive
oxygen species (ROS) on the life-histories of animals. ROS levels have mostly been inferred indirectly
due to the limitations of estimating ROS from in vitro methods. However, measuring ROS (hydrogen
peroxide, H2O2) content in vivo is now possible using the MitoB probe. Here, we extend and refine
the MitoB method to make it suitable for ecological studies of oxidative stress using the brown trout
Salmo trutta as model. The MitoB method allows an evaluation of H2O2 levels in living organisms over
a timescale from hours to days. The method is flexible with regard to the duration of exposure and
initial concentration of the MitoB probe, and there is no transfer of the MitoB probe between fish. H2O2
levels were consistent across subsamples of the same liver but differed between muscle subsamples
and between tissues of the same animal. The MitoB method provides a convenient method for
measuring ROS levels in living animals over a significant period of time. Given its wide range of possible
applications, it opens the opportunity to study the role of ROS in mediating life history trade-offs in
ecological settings
Building professional discourse in emerging markets: Language, context and the challenge of sensemaking
Using ethnographic evidence from the former Soviet republics, this article examines a relatively new and mainly unobserved in the International Business (IB) literature phenomenon of communication disengagement that manifests itself in many emerging markets. We link it to the deficiencies of the local professional business discourse rooted in language limitations reflecting lack of experience with the market economy. This hampers cognitive coherence between foreign and local business entities, adding to the liability of foreignness as certain instances of professional experience fail to find adequate linguistic expression, and complicates cross-cultural adjustments causing multi-national companies (MNCs) financial losses. We contribute to the IB literature by examining cross-border semantic sensemaking through a retrospectively constructed observational study. We argue that a relative inadequacy of the national professional idiom is likely to remain a feature of business environment in post-communist economies for some time and therefore should be factored into business strategies of MNCs. Consequently, we recommend including discursive hazards in the risk evaluation of international projects
Nonlinear vortex light beams supported and stabilized by dissipation
We describe nonlinear Bessel vortex beams as localized and stationary
solutions with embedded vorticity to the nonlinear Schr\"odinger equation with
a dissipative term that accounts for the multi-photon absorption processes
taking place at high enough powers in common optical media. In these beams,
power and orbital angular momentum are permanently transferred to matter in the
inner, nonlinear rings, at the same time that they are refueled by spiral
inward currents of energy and angular momentum coming from the outer linear
rings, acting as an intrinsic reservoir. Unlike vortex solitons and dissipative
vortex solitons, the existence of these vortex beams does not critically depend
on the precise form of the dispersive nonlinearities, as Kerr self-focusing or
self-defocusing, and do not require a balancing gain. They have been shown to
play a prominent role in "tubular" filamentation experiments with powerful,
vortex-carrying Bessel beams, where they act as attractors in the beam
propagation dynamics. Nonlinear Bessel vortex beams provide indeed a new
solution to the problem of the stable propagation of ring-shaped vortex light
beams in homogeneous self-focusing Kerr media. A stability analysis
demonstrates that there exist nonlinear Bessel vortex beams with single or
multiple vorticity that are stable against azimuthal breakup and collapse, and
that the mechanism that renders these vortexes stable is dissipation. The
stability properties of nonlinear Bessel vortex beams explain the experimental
observations in the tubular filamentation experiments.Comment: Chapter of boo
Differential cross sections and spin density matrix elements for the reaction gamma p -> p omega
High-statistics differential cross sections and spin density matrix elements
for the reaction gamma p -> p omega have been measured using the CLAS at
Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV.
Results are reported in 112 10-MeV wide CM energy bins, each subdivided into
cos(theta_CM) bins of width 0.1. These are the most precise and extensive omega
photoproduction measurements to date. A number of prominent structures are
clearly present in the data. Many of these have not previously been observed
due to limited statistics in earlier measurements
Exclusive electroproduction on the proton at CLAS
The reaction has been measured, using the 5.754
GeV electron beam of Jefferson Lab and the CLAS detector. This represents the
largest ever set of data for this reaction in the valence region. Integrated
and differential cross sections are presented. The , and
dependences of the cross section are compared to theoretical calculations based
on -channel meson-exchange Regge theory on the one hand and on quark handbag
diagrams related to Generalized Parton Distributions (GPDs) on the other hand.
The Regge approach can describe at the 30% level most of the features
of the present data while the two GPD calculations that are presented in this
article which succesfully reproduce the high energy data strongly underestimate
the present data. The question is then raised whether this discrepancy
originates from an incomplete or inexact way of modelling the GPDs or the
associated hard scattering amplitude or whether the GPD formalism is simply
inapplicable in this region due to higher-twists contributions, incalculable at
present.Comment: 29 pages, 29 figure
Photodisintegration of He into p+t
The two-body photodisintegration of He into a proton and a triton has
been studied using the CEBAF Large-Acceptance Spectrometer (CLAS) at Jefferson
Laboratory. Real photons produced with the Hall-B bremsstrahlung-tagging system
in the energy range from 0.35 to 1.55 GeV were incident on a liquid He
target. This is the first measurement of the photodisintegration of He
above 0.4 GeV. The differential cross sections for the He
reaction have been measured as a function of photon-beam energy and
proton-scattering angle, and are compared with the latest model calculations by
J.-M. Laget. At 0.6-1.2 GeV, our data are in good agreement only with the
calculations that include three-body mechanisms, thus confirming their
importance. These results reinforce the conclusion of our previous study of the
three-body breakup of He that demonstrated the great importance of
three-body mechanisms in the energy region 0.5-0.8 GeV .Comment: 13 pages submitted in one tgz file containing 2 tex file and 22
postscrip figure
- …
