300 research outputs found

    H‐adaptive finite element solution of high Rayleigh number thermally driven cavity problem

    Get PDF
    An h‐adaptive finite element code for solving coupled Navier‐Stokes and energy equations is used to solve the thermally driven cavity problem. The buoyancy forces are represented using the Boussinesq approximation. The problem is characterised by very thin boundary layers at high values of Rayleigh number (>106). However, steady state solutions are achievable with adequate discretisation. This is where the auto‐adaptive finite element method provides a powerful means of achieving optimal solutions without having to pre‐define a mesh, which may be either inadequate or too expensive. Steady state and transient results are given for six different Rayleigh numbers in the range 103 to 108 for a Prandtl number of 0.71. The use of h‐adaptivity, based on a posteriori error estimation, is found to ensure a very accurate problem solution at a reasonable computational cost

    H‐adaptive finite element solution of unsteady thermally driven cavity problem

    Get PDF
    An h‐adaptive finite element code for solving coupled Navier‐Stokes and energy equations is used to solve the thermally driven cavity problem for Rayleigh numbers at which no steady state exists (greater than 1.9 × 108). This problem is characterised by sharp thermal and flow boundary layers and highly advection dominated transport, which normally requires special algorithms, such as streamline upwinding, to achieve stable and smooth solutions. It will be shown that h‐adaptivity provides a suitable solution to both of these problems (sharp gradients and advection dominated transport). Adaptivity is also very effective in resolving the flow physics, characterised by unsteady internal waves, are calculated for three Rayleigh numbers; 2 × 108, 3 × 108 and 4 × 108 using a Prandtl number of 0.71 and results are compared with other published results.EPSRC research studentshi

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Reliability and time-to-failure bounds for discrete-time constrained Markov jump linear systems

    Full text link
    [EN] This paper presents a methodology to obtain a guaranteed-reliability controller for constrained linear sys- tems, which switch between different modes according to a Markov chain (Markov jump linear systems). Inside the classical maximal robust controllable set, there is 100% guarantee of never violating constraints at future time. However, outside such set, some sequences might make hitting constraints unavoidable for some disturbance realisations. A guaranteed-reliability controller based on a greedy heuristic approach was proposed in an earlier work for disturbance-free, robustly stabilisable Markov jump linear systems. Here, extensions are presented by, &#64257;rst, considering bounded disturbances and, second, presenting an iterative algorithm based on dynamic programming. In non-stabilisable systems, reliability is zero; therefore, prior results cannot be applied; in this case, optimisation of a mean-time-to-failure bound is proposed, via minor algorithm modi&#64257;cations. Optimality can be proved in the disturbance-free, &#64257;nitely generated case.The authors gratefully acknowledge the financial support of Spanish MINECO (DPI2011-27845-C02-01, FPU12/02107) and Generalitat Valenciana (PrometeoII/2013/004).Hernandez-Mejias, MA.; Sala, A. (2017). Reliability and time-to-failure bounds for discrete-time constrained Markov jump linear systems. International Journal of Robust and Nonlinear Control. 27:1773-1791. https://doi.org/10.1002/rnc.3635S177317912

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40

    Two-dimensional elastoplastic analysis of cylindrical cavity problems in Tresca materials

    Get PDF
    This paper presents analytical elastic-plastic solutions for static stress loading analysis and quasi-static expansion analysis of a cylindrical cavity in Tresca materials, considering biaxial far-field stresses and shear stresses along the inner cavity wall. The two-dimensional static stress solution is obtained by assuming that the plastic zone is statically determinate and using the complex variable theory in the elastic analysis. A rigorous conformal mapping function is constructed, which predicts that the elastic-plastic boundary is in an elliptic shape under biaxial in situ stresses, and the range of the plastic zone extends with increasing internal shear stresses. The major axis of the elliptical elastic-plastic boundary coincides with the direction of the maximum far-field compression stress. Furthermore, considering the internal shear stresses, an analytical large-strain displacement solution is derived for continuous cavity expansion analysis in a hydrostatic initial stress filed. Based on the derived analytical stress and displacement solutions, the influence of the internal shear stresses on the quasi-static cavity expansion process is studied. It is shown that additional shear stresses could reduce the required normal expansion pressure to a certain degree, which partly explains the great reduction of the axial soil resistance due to rotations in rotating cone penetration tests. In addition, through additionally considering the potential influences of biaxial in situ stresses and shear stresses generated around the borehole during drillings, an improved cavity expansion approach for estimating the maximum allowable mud pressure of horizontal directional drillings (HDDs) in undrained clays is proposed and validated

    The presentation, diagnosis and management of non-traumatic wrist pain: an evaluation of current practice in secondary care in the UK NHS

    Get PDF
    AbstractObjectivesThe study aims were to assess the burden of non-traumatic wrist pain in terms of numbers of referrals to secondary care, and to characterise how patients present, are diagnosed and are managed in secondary care in the United Kingdom National Health Service.MethodsTen consecutive patients presenting with non-traumatic wrist pain were identified retrospectively at each of 16 participating hospitals and data was extracted for twelve months following the initial referral.ResultsThe 160 patients consisted of 100 females and 60 males with a median age of 49, accounting for approximately 13% of all new hand/wrist referrals. The dominant wrist was affected in 60% of cases and the mean symptom duration was 13.3 months. Diagnoses were grouped into: osteoarthritis (OA) (31%), tendinopathy (13%), ganglion (14%), ulnar sided pain (17%) and other (25%). The OA group was significantly older than other groups, while other groups contained a predominance of females.The non-surgical interventions in decreasing frequency of usage were: steroid injections (39%), physiotherapy (32%), splint (31%) and analgesics (12%). Of those who underwent surgery, all patients had previously received non-surgical treatment, however 42% had undergone only one non-surgical intervention.ConclusionNon-traumatic wrist pain represents a significant burden to secondary care both in terms of new patient referrals and in terms of investigation, follow up and treatment. Those presenting with osteoarthritis are more likely to be older and male, while those presenting with other diagnoses are more likely to be younger and female

    Dissociation of CAK from Core TFIIH Reveals a Functional Link between XP-G/CS and the TFIIH Disassembly State

    Get PDF
    Transcription factor II H (TFIIH) is comprised of core TFIIH and Cdk-activating kinase (CAK) complexes. Here, we investigated the molecular and cellular manifestation of the TFIIH compositional changes by XPG truncation mutations. We showed that both core TFIIH and CAK are rapidly recruited to damage sites in repair-proficient cells. Chromatin immunoprecipitation against TFIIH and CAK components revealed a physical engagement of CAK in nucleotide excision repair (NER). While XPD recruitment to DNA damage was normal, CAK was not recruited in severe XP-G and XP-G/CS cells, indicating that the associations of CAK and XPD to core TFIIH are differentially affected. A CAK inhibition approach showed that CAK activity is not required for assembling pre-incision machinery in vivo or for removing genomic photolesions. Instead, CAK is involved in Ser5-phosphorylation and UV-induced degradation of RNA polymerase II. The CAK inhibition impaired transcription from undamaged and UV-damaged reporter, and partially decreased transcription of p53-dependent genes. The overall results demonstrated that a) XP-G/CS mutations affect the disassembly state of TFIIH resulting in the dissociation of CAK, but not XPD from core TFIIH, and b) CAK activity is not essential for global genomic repair but involved in general transcription and damage-induced RNA polymerase II degradation

    Extensive Gene-Specific Translational Reprogramming in a Model of B Cell Differentiation and Abl-Dependent Transformation

    Get PDF
    To what extent might the regulation of translation contribute to differentiation programs, or to the molecular pathogenesis of cancer? Pre-B cells transformed with the viral oncogene v-Abl are suspended in an immortalized, cycling state that mimics leukemias with a BCR-ABL1 translocation, such as Chronic Myelogenous Leukemia (CML) and Acute Lymphoblastic Leukemia (ALL). Inhibition of the oncogenic Abl kinase with imatinib reverses transformation, allowing progression to the next stage of B cell development. We employed a genome-wide polysome profiling assay called Gradient Encoding to investigate the extent and potential contribution of translational regulation to transformation and differentiation in v-Abl-transformed pre-B cells. Over half of the significantly translationally regulated genes did not change significantly at the level of mRNA abundance, revealing biology that might have been missed by measuring changes in transcript abundance alone. We found extensive, gene-specific changes in translation affecting genes with known roles in B cell signaling and differentiation, cancerous transformation, and cytoskeletal reorganization potentially affecting adhesion. These results highlight a major role for gene-specific translational regulation in remodeling the gene expression program in differentiation and malignant transformation
    corecore