30 research outputs found
Exopolysaccharide-peptide complex from oyster mushroom (Pleurotus ostreatus) protects against hepatotoxicity in rats
© 2020 Liver damage involves oxidative stress and a progression from chronic hepatitis to hepatocellular carcinoma (HCC). The increased incidence of liver disease in Egypt and other countries in the last decade, coupled with poor prognosis, justify the critical need to introduce alternative chemopreventive agents that may protect against liver damage. The aim of this study was to evaluate the efficacy of exopolysaccharide-peptide (PSP) complex extracted from Pleurotus ostreatus as a hepatoprotective agent against diethylnitrosamine (DEN)/carbon tetrachloride (CCL4)-induced hepatocellular damage in rats. The levels of liver injury markers (ALT, AST and ALP) were substantially increased following DEN/CCl4 treatment. DEN/CCl4 - induced oxidative stress was confirmed by elevated levels of lipid peroxidation and decreased levels of superoxide dismutase, glutathione-S-transferase, and reduced glutathione. PSP reversed these alterations in the liver and serum, and provided protection evidenced by reversal of histopathological changes in the liver. The present study demonstrated that PSP extract from P. ostreatus exhibited hepatoprotective and antioxidant effects against DEN/CCl4-induced hepatocellular damage in rats. Given the high prevalence of HCV-related liver damage in Egypt, our results suggest further clinical evaluation of P. ostreatus extracts and their potential hepatoprotective effects in patients with liver disease
Hierarchical nanostructures of In–SnO2 with enhanced photo catalytic activity for the degradation of RR 120 dye
The Alloga quarry, Southwestern Sinai, Egypt: geological studies, radioactivity and mineralogical investigations
Efeito de lubrificantes sobre a integridade da sonda de Foley e implicações no tamponamento nasal para epistaxe
Bioactivity Behavior of Multicomponent (P2O5 –B2O3- SiO2-Na2O-CaF2) Glasses Doped with ZnO, CuO or Ag2O and their Glass-Ceramics
Elucidation of spheroid formation with and without the extrusion step
Spheroid formation mechanisms were investigated using extrusion-spheronization (ES) and rotary processing (RP). Using ES (cross-hatch), ES (teardrop), and RP (teardrop), spheroids with similar mass median diameter (MMD) and span were produced using equivalent formulation and spheronization conditions. During spheronization, the teardrop-studded rotating frictional surface, with increased peripheral tip speed and duration, produced spheroids of equivalent MMD and span to those produced by the cross-hatch rotating frictional plate surface. The roundness of these spheroids was also similar. RP required less water to produce spheroids of MMD similar to that of spheroids produced by ES. However, these RP spheroids were less spherical. Image analysis of 625 spheroids per batch indicated that the size distribution of RP spheroids had significantly greater SD, positive skewness, and kurtosis. Morphological examination of time-sampled spheroids produced by ES indicated that spheroid formation occurred predominatly by attrition and layering, while RP spheroids were formed by nucleation, agglomeration, layering, and coalescence. RP produced spheroids with higher crushing strength than that of ES-produced spheroids. The amount of moisture lost during spheronization for spheroids produced by ES had minimal influence on their eventual size. Differences in process and formulation parameters, in addition to size distribution and observed morphological changes, enabled a greater understanding of spheroid formation and methods to optimize spheroid production
