794 research outputs found
Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale
The detection of sound begins when energy derived from acoustic stimuli
deflects the hair bundles atop hair cells. As hair bundles move, the viscous
friction between stereocilia and the surrounding liquid poses a fundamental
challenge to the ear's high sensitivity and sharp frequency selectivity. Part
of the solution to this problem lies in the active process that uses energy for
frequency-selective sound amplification. Here we demonstrate that a
complementary part involves the fluid-structure interaction between the liquid
within the hair bundle and the stereocilia. Using force measurement on a
dynamically scaled model, finite-element analysis, analytical estimation of
hydrodynamic forces, stochastic simulation and high-resolution interferometric
measurement of hair bundles, we characterize the origin and magnitude of the
forces between individual stereocilia during small hair-bundle deflections. We
find that the close apposition of stereocilia effectively immobilizes the
liquid between them, which reduces the drag and suppresses the relative
squeezing but not the sliding mode of stereociliary motion. The obliquely
oriented tip links couple the mechanotransduction channels to this least
dissipative coherent mode, whereas the elastic horizontal top connectors
stabilize the structure, further reducing the drag. As measured from the
distortion products associated with channel gating at physiological stimulation
amplitudes of tens of nanometres, the balance of forces in a hair bundle
permits a relative mode of motion between adjacent stereocilia that encompasses
only a fraction of a nanometre. A combination of high-resolution experiments
and detailed numerical modelling of fluid-structure interactions reveals the
physical principles behind the basic structural features of hair bundles and
shows quantitatively how these organelles are adapted to the needs of sensitive
mechanotransduction.Comment: 21 pages, including 3 figures. For supplementary information, please
see the online version of the article at http://www.nature.com/natur
Evidence for distinct coastal and offshore communities of bottlenose dolphins in the north east Atlantic.
Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) [corrected] populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations
Camparison of the Hanbury Brown-Twiss effect for bosons and fermions
Fifty years ago, Hanbury Brown and Twiss (HBT) discovered photon bunching in
light emitted by a chaotic source, highlighting the importance of two-photon
correlations and stimulating the development of modern quantum optics . The
quantum interpretation of bunching relies upon the constructive interference
between amplitudes involving two indistinguishable photons, and its additive
character is intimately linked to the Bose nature of photons. Advances in atom
cooling and detection have led to the observation and full characterisation of
the atomic analogue of the HBT effect with bosonic atoms. By contrast, fermions
should reveal an antibunching effect, i.e., a tendency to avoid each other.
Antibunching of fermions is associated with destructive two-particle
interference and is related to the Pauli principle forbidding more than one
identical fermion to occupy the same quantum state. Here we report an
experimental comparison of the fermion and the boson HBT effects realised in
the same apparatus with two different isotopes of helium, 3He (a fermion) and
4He (a boson). Ordinary attractive or repulsive interactions between atoms are
negligible, and the contrasting bunching and antibunching behaviours can be
fully attributed to the different quantum statistics. Our result shows how
atom-atom correlation measurements can be used not only for revealing details
in the spatial density, or momentum correlations in an atomic ensemble, but
also to directly observe phase effects linked to the quantum statistics in a
many body system. It may thus find applications to study more exotic situations
>.Comment: Nature 445, 402 (2007). V2 includes the supplementary informatio
Differential cross sections and spin density matrix elements for the reaction gamma p -> p omega
High-statistics differential cross sections and spin density matrix elements
for the reaction gamma p -> p omega have been measured using the CLAS at
Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV.
Results are reported in 112 10-MeV wide CM energy bins, each subdivided into
cos(theta_CM) bins of width 0.1. These are the most precise and extensive omega
photoproduction measurements to date. A number of prominent structures are
clearly present in the data. Many of these have not previously been observed
due to limited statistics in earlier measurements
Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers
We present a review of the interplay between the evolution of circumstellar
disks and the formation of planets, both from the perspective of theoretical
models and dedicated observations. Based on this, we identify and discuss
fundamental questions concerning the formation and evolution of circumstellar
disks and planets which can be addressed in the near future with optical and
infrared long-baseline interferometers. Furthermore, the importance of
complementary observations with long-baseline (sub)millimeter interferometers
and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics
Review"; The final publication is available at http://www.springerlink.co
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
Quantitative imaging of concentrated suspensions under flow
We review recent advances in imaging the flow of concentrated suspensions,
focussing on the use of confocal microscopy to obtain time-resolved information
on the single-particle level in these systems. After motivating the need for
quantitative (confocal) imaging in suspension rheology, we briefly describe the
particles, sample environments, microscopy tools and analysis algorithms needed
to perform this kind of experiments. The second part of the review focusses on
microscopic aspects of the flow of concentrated model hard-sphere-like
suspensions, and the relation to non-linear rheological phenomena such as
yielding, shear localization, wall slip and shear-induced ordering. Both
Brownian and non-Brownian systems will be described. We show how quantitative
imaging can improve our understanding of the connection between microscopic
dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of
methodology. Submitted for special volume 'High Solid Dispersions' ed. M.
Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009);
22 pages, 16 fig
Determination of glucose exchange rates and permeability of erythrocyte membrane in preeclampsia and subsequent oxidative stress-related protein damage using dynamic-19F-NMR
The cause of the pregnancy condition preeclampsia (PE) is thought to be endothelial dysfunction caused by oxidative stress. As abnormal glucose tolerance has also been associated with PE, we use a fluorinated-mimic of this metabolite to establish whether any oxidative damage to lipids and proteins in the erythrocyte membrane has increased cell membrane permeability. Data were acquired using 19F Dynamic-NMR (DNMR) to measure exchange of 3-fluoro-3-deoxyglucose (3-FDG) across the membrane of erythrocytes from 10 pregnant women (5 healthy control women, and 5 from women suffering from PE). Magnetisation transfer was measured using the 1D selective inversion and 2D EXSY pulse sequences, over a range of time delays. Integrated intensities from these experiments were used in matrix diagonalisation to estimate the values of the rate constants of exchange and membrane permeability. No significant differences were observed for the rate of exchange of 3-FDG and membrane permeability between healthy pregnant women and those suffering from PE, leading us to conclude that no oxidative damage had occurred at this carrier-protein site in the membrane
Hydrodynamic modelling of protein conformation in solution: ELLIPS and HYDRO
The last three decades has seen some important
advances in our ability to represent the conformation of
proteins in solution on the basis of hydrodynamic measurements.
Advances in theoretical modeling capabilities have
been matched by commensurate advances in the precision of
hydrodynamic measurements. We consider the advances in
whole-body (simple ellipsoid-based) modeling—still useful
for providing an overall idea of molecular shape, particularly
for those systems where only a limited amount of data is
available—and outline the ELLIPS suite of algorithms
which facilitates the use of this approach. We then focus
on bead modeling strategies, particularly the surface or
shell–bead approaches and the HYDRO suite of algorithms.
We demonstrate how these are providing great insights into
complex issues such as the conformation of immunoglobulins
and other multi-domain complexes
Challenge clusters facing LCA in environmental decision-making—what we can learn from biofuels
Purpose Bioenergy is increasingly used to help meet greenhouse gas (GHG) and renewable energy targets. However, bioenergy’s sustainability has been questioned, resulting in increasing use of life cycle assessment (LCA). Bioenergy systems are global and complex, and market forces can result in significant changes, relevant to LCA and policy. The goal of this paper is to illustrate the complexities associated with LCA, with particular focus on bioenergy and associated policy development, so that its use can more effectively inform policymakers. Methods The review is based on the results from a series of workshops focused on bioenergy life cycle assessment. Expert submissions were compiled and categorized within the first two workshops. Over 100 issues emerged. Accounting for redundancies and close similarities in the list, this reduced to around 60 challenges, many of which are deeply interrelated. Some of these issues were then explored further at a policyfacing workshop in London, UK. The authors applied a rigorous approach to categorize the challenges identified to be at the intersection of biofuels/bioenergy LCA and policy. Results and discussion The credibility of LCA is core to its use in policy. Even LCAs that comply with ISO standards and policy and regulatory instruments leave a great deal of scope for interpretation and flexibility. Within the bioenergy sector, this has led to frustration and at times a lack of obvious direction. This paper identifies the main challenge clusters: overarching issues, application and practice and value and ethical judgments. Many of these are reflective of the transition from application of LCA to assess individual products or systems to the wider approach that is becoming more common. Uncertainty in impact assessment strongly influences planning and compliance due to challenges in assigning accountability, and communicating the inherent complexity and uncertainty within bioenergy is becoming of greater importance. Conclusions The emergence of LCA in bioenergy governance is particularly significant because other sectors are likely to transition to similar governance models. LCA is being stretched to accommodate complex and broad policy-relevant questions, seeking to incorporate externalities that have major implications for long-term sustainability. As policy increasingly relies on LCA, the strains placed on the methodology are becoming both clearer and impedimentary. The implications for energy policy, and in particular bioenergy, are large
- …
