182 research outputs found
Deuteron and antideuteron production in Au+Au collisions at sqrt(s_NN)=200 GeV
The production of deuterons and antideuterons in the transverse momentum
range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at
sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A
coalescence analysis comparing the deuteron and antideuteron spectra with those
of protons and antiprotons, has been performed. The coalescence probability is
equal for both deuterons and antideuterons and increases as a function of p_T,
which is consistent with an expanding collision zone. Comparing (anti)proton
yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/-
0.03, we estimate that n_bar/n = 0.64 +/- 0.04.Comment: 326 authors, 6 pages text, 5 figures, 1 Table. Submitted to PRL.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV
The invariant differential cross section for inclusive electron production in
p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment
at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4
<= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the
inclusive electron spectrum from semileptonic decays of hadrons carrying heavy
flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via
three independent methods. The resulting electron spectrum from heavy flavor
decays is compared to recent leading and next-to-leading order perturbative QCD
calculations. The total cross section of charm quark-antiquark pair production
is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Production of phi mesons at mid-rapidity in sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC
We present the first results of meson production in the K^+K^- decay channel
from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by
the PHENIX detector at RHIC. Precision resonance centroid and width values are
extracted as a function of collision centrality. No significant variation from
the PDG accepted values is observed. The transverse mass spectra are fitted
with a linear exponential function for which the derived inverse slope
parameter is seen to be constant as a function of centrality. These data are
also fitted by a hydrodynamic model with the result that the freeze-out
temperature and the expansion velocity values are consistent with the values
previously derived from fitting single hadron inclusive data. As a function of
transverse momentum the collisions scaled peripheral.to.central yield ratio RCP
for the is comparable to that of pions rather than that of protons. This result
lends support to theoretical models which distinguish between baryons and
mesons instead of particle mass for explaining the anomalous proton yield.Comment: 326 authors, 24 pages text, 23 figures, 6 tables, RevTeX 4. To be
submitted to Physical Review C as a regular article. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Measurement of Transverse Single-Spin Asymmetries for Mid-rapidity Production of Neutral Pions and Charged Hadrons in Polarized p+p Collisions at sqrt(s) = 200 GeV
The transverse single-spin asymmetries of neutral pions and non-identified
charged hadrons have been measured at mid-rapidity in polarized proton-proton
collisions at sqrt(s) = 200 GeV. The data cover a transverse momentum (p_T)
range 0.5-5.0 GeV/c for charged hadrons and 1.0-5.0 GeV/c for neutral pions, at
a Feynman-x (x_F) value of approximately zero. The asymmetries seen in this
previously unexplored kinematic region are consistent with zero within
statistical errors of a few percent. In addition, the inclusive charged hadron
cross section at mid-rapidity from 0.5 < p_T < 7.0 GeV/c is presented and
compared to NLO pQCD calculations. Successful description of the unpolarized
cross section above ~2 GeV/c using NLO pQCD suggests that pQCD is applicable in
the interpretation of the asymmetry results in the relevant kinematic range.Comment: 331 authors, 6 pages text, 2 figures, 3 tables. Submitted to Phys.
Rev. Lett. Plain text data tables for the points plotted in figures for this
and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
The Accidental Terrorist: Okhrana Connections to the Extreme-Right and the Attempt to Assassinate Sergei Witte in 1907
This article represents a case study in the relationship between the tsarist secret police (commonly known as the Okhrana in the West and okhranka in Russia) and acts of political terror perpetrated by the extreme-right in late imperial Russia. This specific case concerns the tangled web of conspiracy, propaganda and controversy that surrounded the attempted assassination of former-Chairman of the Council of Ministers, Sergei Witte, in 1907
Spin chemistry investigation of peculiarities of photoinduced electron transfer in donor-acceptor linked system
Photoinduced intramolecular electron transfer in linked systems, (R,S)-
and (S,S)-naproxen-N-methylpyrrolidine dyads, has been studied by means of spin
chemistry methods [magnetic field effect and chemically induced dynamic nuclear
polarization (CIDNP)]. The relative yield of the triplet state of the dyads in different
magnetic field has been measured, and dependences of the high-field CIDNP of the
N-methylpyrrolidine fragment on solvent polarity have been investigated. However,
both (S,S)- and (R,S)-enantiomers demonstrate almost identical CIDNP effects for
the entire range of polarity. It has been demonstrated that the main peculiarities of
photoprocesses in this linked system are connected with the participation of singlet
exciplex alongside with photoinduced intramolecular electron transfer in chromophore
excited state quenching.This work was supported by the grants 08-03-00372 and 11-03-01104 of the Russian Foundation for Basic Research, and the grant of Priority Programs of the Russian Academy of Sciences, nr. 5.1.5.Magin, I.; Polyakov, N.; Khramtsova, E.; Kruppa, A.; Stepanov, A.; Purtov, P.; Leshina, T.... (2011). Spin chemistry investigation of peculiarities of photoinduced electron transfer in donor-acceptor linked system. Applied Magnetic Resonance. 41(2-4):205-220. https://doi.org/10.1007/s00723-011-0288-3S205220412-4J.S. Park, E. Karnas, K. Ohkubo, P. Chen, K.M. Kadish, S. Fukuzumi, C.W. Bielawski, T.W. Hudnall, V.M. Lynch, J.L. Sessler, Science 329, 1324–1327 (2010)S.Y. Reece, D.G. Nocera, Annu. Rev. Biochem. 78, 673–699 (2009)M.S. Afanasyeva, M.B. Taraban, P.A. Purtov, T.V. Leshina, C.B. Grissom, J. Am. Chem. Soc. 128, 8651–8658 (2006)M.A. Fox, M. Chanon, in Photoinduced Electron Transfer. C: Photoinduced Electron Transfer Reactions: Organic Substrates (Elsevier, New York, 1988), p. 754P.J. Hayball, R.L. Nation, F. Bochner, Chirality 4, 484–487 (1992)N. Suesa, M.F. Fernandez, M. Gutierrez, M.J. Rufat, E. Rotllan, L. Calvo, D. Mauleon, G. Carganico, Chirality 5, 589–595 (1993)A.M. Evans, J. Clin. Pharmacol. 36, 7–15 (1996)Y. Inoue, T. Wada, S. Asaoka, H. Sato, J.-P. Pete, Chem Commun. 4, 251–259 (2000)T. Yorozu, K. Hayashi, M. Irie, J. Am. Chem. Soc. 103, 5480–5548 (1981)N.J. Turro, in Modern Molecular Photochemistry (Benjamin/Cummings, San Francisco, 1978)K.M. Salikhov, Y.N. Molin, R.Z. Sagdeev, A.L. Buchachenko, in Spin Polarization and Magnetic Field Effects in Radical Reactions (Akademiai Kiado, Budapest, 1984), p. 419E.A. Weiss, M.A. Ratner, M.R. Wasielewski, J. Phys. Chem. A 107, 3639–3647 (2003)A.S. Lukas, P.J. Bushard, E.A. Weiss, M.R. Wasielewski, J. Am. Chem. Soc. 125, 3921–3930 (2003)R. Nakagaki, K. Mutai, M. Hiramatsu, H. Tukada, S. Nakakura, Can. J. Chem. 66, 1989–1996 (1988)M.C. Jim′enez, U. Pischel, M.A. Miranda, J. Photochem. Photobiol. C Photochem. Rev. 8, 128–142 (2007)S. Abad, U. Pischel, M.A. Miranda, Photochem. Photobiol. Sci. 4, 69–74 (2005)U. Pischel, S. Abad, L.R. Domingo, F. Bosca, M.A. Miranda, Angew. Chem. Int. Ed. 42, 2531–2534 (2003)G.L. Closs, R.J. Miller, J. Am. Chem. Soc. 101, 1639–1641 (1979)G.L. Closs, R.J. Miller, J. Am. Chem. Soc. 103, 3586–3588 (1981)M. Goez, Chem. Phys. Lett. 188, 451–456 (1992)I.F. Molokov, Y.P. Tsentalovich, A.V. Yurkovskaya, R.Z. Sagdeev, J. Photochem. Photobiol. A 110, 159–165 (1997)U. Pischel, S. Abad, M.A. Miranda, Chem. Commun. 9, 1088–1089 (2003)H. Hayashi, S. Nagakura, Bull. Chem. Soc. Jpn. 57, 322–328 (1984)Y. Sakaguchi, H. Hayashi, S. Nagakura, Bull. Chem. Soc. Jpn. 53, 39–42 (1980)H. Yonemura, H. Nakamura, T. Matsuo, Chem. Phys. Lett. 155, 157–161 (1989)N. Hata, M. Hokawa, Chem. Lett. 10, 507–510 (1981)M. Shiotani, L. Sjoeqvist, A. Lund, S. Lunell, L. Eriksson, M.B. Huang, J. Phys. Chem. 94, 8081–8090 (1990)E. Schaffner, H. Fischer, J. Phys. Chem. 100, 1657–1665 (1996)Y. Mori, Y. Sakaguchi, H. Hayashi, Chem. Phys. Lett. 286, 446–451 (1998)I.M. Magin, A.I. Kruppa, P.A. Purtov, Chem. Phys. 365, 80–84 (2009)K.K. Barnes, Electrochemical Reactions in Nonaqueous Systems (M. Dekker, New York, 1970), p. 560J. Bargon, J. Am. Chem. Soc. 99, 8350–8351 (1977)M. Goez, I. Frisch, J. Phys. Chem. A 106, 8079–8084 (2002)A.K. Chibisov, Russ. Chem. Rev. 50, 615–629 (1981)J. Goodman, K. Peters, J. Am. Chem. Soc. 107, 1441–1442 (1985)H. Cao, Y. Fujiwara, T. Haino, Y. Fukazawa, C.-H. Tung, Y. Tanimoto, Bull. Chem. Soc. Jpn. 69, 2801–2813 (1996)P.A. Purtov, A.B. Doktorov, Chem. Phys. 178, 47–65 (1993)A.I. Kruppa, O.I. Mikhailovskaya, T.V. Leshina, Chem. Phys. Lett. 147, 65–71 (1988)M.E. Michel-Beyerle, R. Haberkorn, W. Bube, E. Steffens, H. Schröder, H.J. Neusser, E.W. Schlag, H. Seidlitz, Chem. Phys. 17, 139–145 (1976)K. Schulten, H. Staerk, A. Weller, H.-J. Werner, B. Nickel, Z. Phys. Chem. 101, 371–390 (1976)K. Gnadig, K.B. Eisenthal, Chem. Phys. Lett. 46, 339–342 (1977)T. Nishimura, N. Nakashima, N. Mataga, Chem. Phys. Lett. 46, 334–338 (1977)M.G. Kuzmin, I.V. Soboleva, E.V. Dolotova, D.N. Dogadkin, High Eng. Chem. 39, 86–96 (2005
An examination of the effectiveness of health warning labels on smokeless tobacco products in four states in India: findings from the TCP India cohort survey
Systematic Studies of the Centrality and sqrt(s_NN) Dependence of dE_T/deta and dN_ch/deta in Heavy Ion Collisions at Mid-rapidity
The PHENIX experiment at RHIC has measured transverse energy and charged
particle multiplicity at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 19.6,
130 and 200 GeV as a function of centrality. The presented results are compared
to measurements from other RHIC experiments, and experiments at lower energies.
The sqrt(s_NN) dependence of dE_T/deta and dN_ch/deta per pair of participants
is consistent with logarithmic scaling for the most central events. The
centrality dependence of dE_T/deta and dN_ch/deta is similar at all measured
incident energies. At RHIC energies the ratio of transverse energy per charged
particle was found independent of centrality and growing slowly with
sqrt(s_NN). A survey of comparisons between the data and available theoretical
models is also presented.Comment: 327 authors, 25 pages text, 19 figures, 17 tables, RevTeX 4. To be
submitted to Physical Review C as a regular article. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
J/psi production from proton-proton collisions at sqrt(s) = 200 GeV
J/psi production has been measured in proton-proton collisions at sqrt(s)=
200 GeV over a wide rapidity and transverse momentum range by the PHENIX
experiment at RHIC. Distributions of the rapidity and transverse momentum,
along with measurements of the mean transverse momentum and total production
cross section are presented and compared to available theoretical calculations.
The total J/psi cross section is 3.99 +/- 0.61(stat) +/- 0.58(sys) +/-
0.40(abs) micro barns. The mean transverse momentum is 1.80 +/- 0.23(stat) +/-
0.16(sys) GeV/c.Comment: 326 authors, 6 pages text, 4 figures, 1 table, RevTeX 4. To be
submitted to PRL. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
Jet modification via π 0 -hadron correlations in Au+Au collisions at √sNN = 200 GeV
High-momentum two-particle correlations are a useful tool for studying jet-quenching effects in the
quark-gluon plasma. Angular correlations between neutral-pion triggers and charged hadrons with
transverse momenta in the range 4–12 GeV/c and 0.5–7 GeV/c, respectively, have been measured
by the PHENIX experiment in 2014 for Au+Au collisions at √sNN = 200 GeV. Suppression is
observed in the yield of high-momentum jet fragments opposite the trigger particle, which indicates
jet suppression stemming from in-medium partonic energy loss, while enhancement is observed for
low-momentum particles. The ratio and differences between the yield in Au+Au collisions and p+p
collisions, IAA and ∆AA, as a function of the trigger-hadron azimuthal separation, ∆ϕ, are measured
for the first time at the Relativistic Heavy Ion Collider. These results better quantify how the yield of low-pT associated hadrons is enhanced at wide angle, which is crucial for studying energy loss as
well as medium-response effects
- …
