6,160 research outputs found
Tip Allocation: A Compliance Study tor Restaurants
Survey research of the commercial food service industry with regard to tips and tip allocation revealed that 50 percent of restaurateurs require that employees report a minimum amount or percentage of sales and over 50 percent which allocate tips report them as employee income. The authors discuss these results and point out other problems
Nature of the many-body excitations in a quantum wire: Theory and experiment
The natural excitations of an interacting one-dimensional system at low
energy are hydrodynamic modes of Luttinger liquid, protected by the Lorentz
invariance of the linear dispersion. We show that beyond low energies, where
quadratic dispersion reduces the symmetry to Galilean, the main character of
the many-body excitations changes into a hierarchy: calculations of dynamic
correlation functions for fermions (without spin) show that the spectral
weights of the excitations are proportional to powers of
, where is a length-scale related to
interactions and is the system length. Thus only small numbers of
excitations carry the principal spectral power in representative regions on the
energy-momentum planes. We have analysed the spectral function in detail and
have shown that the first-level (strongest) excitations form a mode with
parabolic dispersion, like that of a renormalised single particle. The
second-level excitations produce a singular power-law line shape to the
first-level mode and multiple power-laws at the spectral edge. We have
illustrated crossover to Luttinger liquid at low energy by calculating the
local density of state through all energy scales: from linear to non-linear,
and to above the chemical potential energies. In order to test this model, we
have carried out experiments to measure momentum-resolved tunnelling of
electrons (fermions with spin) from/to a wire formed within a GaAs
heterostructure. We observe well-resolved spin-charge separation at low energy
with appreciable interaction strength and only a parabolic dispersion of the
first-level mode at higher energies. We find structure resembling the
second-level excitations, which dies away rapidly at high momentum in line with
the theoretical predictions here.We acknowledge financial support from the UK EPSRC through Grants No. EP/J01690X/1 and No. EP/J016888/1 and from the DFG through SFB/TRR 49. This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915.This is the author accepted manuscript. The final version is available from APS via http://dx.doi.org/10.1103/PhysRevB.93.07514
Health-related quality of life as measured with EQ-5D among populations with and without specific chronic conditions: A population-based survey in Shaanxi province, China
© 2013 Tan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Introduction: The aim of this study was to examine health-related quality of life (HRQoL) as measured by EQ-5D and to investigate the influence of chronic conditions and other risk factors on HRQoL based on a distributed sample located in Shaanxi Province, China. Methods: A multi-stage stratified cluster sampling method was performed to select subjects. EQ-5D was employed to measure the HRQoL. The likelihood that individuals with selected chronic diseases would report any problem in the EQ-5D dimensions was calculated and tested relative to that of each of the two reference groups. Multivariable linear regression models were used to investigate factors associated with EQ VAS. Results: The most frequently reported problems involved pain/discomfort (8.8%) and anxiety/depression (7.6%). Nearly half of the respondents who reported problems in any of the five dimensions were chronic patients. Higher EQ VAS scores were associated with the male gender, higher level of education, employment, younger age, an urban area of residence, access to free medical service and higher levels of physical activity. Except for anemia, all the selected chronic diseases were indicative of a negative EQ VAS score. The three leading risk factors were cerebrovascular disease, cancer and mental disease. Increases in age, number of chronic conditions and frequency of physical activity were found to have a gradient effect. Conclusion: The results of the present work add to the volume of knowledge regarding population health status in this area, apart from the known health status using mortality and morbidity data. Medical, policy, social and individual attention should be given to the management of chronic diseases and improvement of HRQoL. Longitudinal studies must be performed to monitor changes in HRQoL and to permit evaluation of the outcomes of chronic disease intervention programs. © 2013 Tan et al.National Nature Science Foundation (No. 8107239
Electronic Spin Transport in Dual-Gated Bilayer Graphene
The elimination of extrinsic sources of spin relaxation is key in realizing
the exceptional intrinsic spin transport performance of graphene. Towards this,
we study charge and spin transport in bilayer graphene-based spin valve devices
fabricated in a new device architecture which allows us to make a comparative
study by separately investigating the roles of substrate and polymer residues
on spin relaxation. First, the comparison between spin valves fabricated on
SiO2 and BN substrates suggests that substrate-related charged impurities,
phonons and roughness do not limit the spin transport in current devices. Next,
the observation of a 5-fold enhancement in spin relaxation time in the
encapsulated device highlights the significance of polymer residues on spin
relaxation. We observe a spin relaxation length of ~ 10 um in the encapsulated
bilayer with a charge mobility of 24000 cm2/Vs. The carrier density dependence
of spin relaxation time has two distinct regimes; n<4 x 1012 cm-2, where spin
relaxation time decreases monotonically as carrier concentration increases, and
n>4 x 1012 cm-2, where spin relaxation time exhibits a sudden increase. The
sudden increase in the spin relaxation time with no corresponding signature in
the charge transport suggests the presence of a magnetic resonance close to the
charge neutrality point. We also demonstrate, for the first time, spin
transport across bipolar p-n junctions in our dual-gated device architecture
that fully integrates a sequence of encapsulated regions in its design. At low
temperatures, strong suppression of the spin signal was observed while a
transport gap was induced, which is interpreted as a novel manifestation of
impedance mismatch within the spin channel
WiseEye: next generation expandable and programmable camera trap platform for wildlife research
Funding: The work was supported by the RCUK Digital Economy programme to the dot.rural Digital Economy Hub; award reference: EP/G066051/1. The work of S. Newey and RJI was part funded by the Scottish Government's Rural and Environment Science and Analytical Services (RESAS). Details published as an Open Source Toolkit, PLOS Journals at: http://dx.doi.org/10.1371/journal.pone.0169758Peer reviewedPublisher PD
Anti-HIV-1 activity of cellulose acetate phthalate: Synergy with soluble CD4 and induction of "dead-end" gp41 six-helix bundles
BACKGROUND: Cellulose acetate phthalate (CAP), a promising candidate microbicide for prevention of sexual transmission of the human immunodeficiency virus type 1 (HIV-1) and other sexually transmitted disease (STD) pathogens, was shown to inactivate HIV-1 and to block the coreceptor binding site on the virus envelope glycoprotein gp120. It did not interfere with virus binding to CD4. Since CD4 is the primary cellular receptor for HIV-1, it was of interest to study CAP binding to HIV-1 complexes with soluble CD4 (sCD4) and its consequences, including changes in the conformation of the envelope glycoprotein gp41 within virus particles. METHODS: Enzyme-linked immunosorbent assays (ELISA) were used to study CAP binding to HIV-1-sCD4 complexes and to detect gp41 six-helix bundles accessible on virus particles using antibodies specific for the α-helical core domain of gp41. RESULTS: 1) Pretreatment of HIV-1 with sCD4 augments subsequent binding of CAP; 2) there is synergism between CAP and sCD4 for inhibition of HIV-1 infection; 3) treatment of HIV-1 with CAP induced the formation of gp41 six-helix bundles. CONCLUSIONS: CAP and sCD4 bind to distinct sites on HIV-1 IIIB and BaL virions and their simultaneous binding has profound effects on virus structure and infectivity. The formation of gp41 six-helical bundles, induced by CAP, is known to render the virus incompetent for fusion with target cells thus preventing infection
Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution
A birth-death process is a continuous-time Markov chain that counts the
number of particles in a system over time. In the general process with
current particles, a new particle is born with instantaneous rate
and a particle dies with instantaneous rate . Currently no robust and
efficient method exists to evaluate the finite-time transition probabilities in
a general birth-death process with arbitrary birth and death rates. In this
paper, we first revisit the theory of continued fractions to obtain expressions
for the Laplace transforms of these transition probabilities and make explicit
an important derivation connecting transition probabilities and continued
fractions. We then develop an efficient algorithm for computing these
probabilities that analyzes the error associated with approximations in the
method. We demonstrate that this error-controlled method agrees with known
solutions and outperforms previous approaches to computing these probabilities.
Finally, we apply our novel method to several important problems in ecology,
evolution, and genetics
Polycation-π Interactions Are a Driving Force for Molecular Recognition by an Intrinsically Disordered Oncoprotein Family
Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined "fuzziness", often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. © 2013 Song et al
The all-particle spectrum of primary cosmic rays in the wide energy range from 10^14 eV to 10^17 eV observed with the Tibet-III air-shower array
We present an updated all-particle energy spectrum of primary cosmic rays in
a wide range from 10^14 eV to 10^17 eV using 5.5 times 10^7 events collected in
the period from 2000 November through 2004 October by the Tibet-III air-shower
array located at 4300 m above sea level (atmospheric depth of 606 g/cm^2). The
size spectrum exhibits a sharp knee at a corresponding primary energy around 4
PeV. This work uses increased statistics and new simulation calculations for
the analysis. We performed extensive Monte Carlo calculations and discuss the
model dependences involved in the final result assuming interaction models of
QGSJET01c and SIBYLL2.1 and primary composition models of heavy dominant (HD)
and proton dominant (PD) ones. Pure proton and pure iron primary models are
also examined as extreme cases. The detector simulation was also made to
improve the accuracy of determining the size of the air showers and the energy
of the primary particle. We confirmed that the all-particle energy spectra
obtained under various plausible model parameters are not significantly
different from each other as expected from the characteristics of the
experiment at the high altitude, where the air showers of the primary energy
around the knee reaches near maximum development and their features are
dominated by electromagnetic components leading to the weak dependence on the
interaction model or the primary mass. This is the highest-statistical and the
best systematics-controlled measurement covering the widest energy range around
the knee energy region.Comment: 19 pages, 20 figures, accepted by Ap
Design of acoustic metamaterials through nonlinear programming
The dispersive wave propagation in a periodic metamaterial with tetrachiral topology and inertial local resonators is investigated. The Floquet-Bloch spectrum of the metamaterial is compared with that of the tetrachiral beam lattice material without resonators. The resonators can be designed to open and shift frequency band gaps, that is, spectrum intervals in which harmonic waves do not propagate. Therefore, an optimal passive control of the frequency band structure can be pursued in the metamaterial. To this aim, a suitable constrained nonlinear optimization problem on a compact set of admissible geometrical and mechanical parameters is stated. According to functional requirements, the particular set of parameters which determines the largest low-frequency band gap between a pair of consecutive branches of the Floquet-Bloch spectrum is obtained. The optimization problem is successfully solved by means of a version of the method of moving asymptotes, combined with a quasi-Monte Carlo multi-start technique.
Subjects: Materials Science (cond-mat.mtrl-sci)
Cite as: arXiv:1603.07717 [cond-mat.mtrl-sci]
(or arXiv:1603.07717v2 [cond-mat.mtrl-sci] for this version
- …
