87 research outputs found
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Experimental biological protocols with formal semantics
Both experimental and computational biology is becoming increasingly automated. Laboratory experiments are now performed automatically on high-throughput machinery, while computational models are synthesized or inferred automatically from data. However, integration between automated tasks in the process of biological discovery is still lacking, largely due to incompatible or missing formal representations. While theories are expressed formally as computational models, existing languages for encoding and automating experimental protocols often lack formal semantics. This makes it challenging to extract novel understanding by identifying when theory and experimental evidence disagree due to errors in the models or the protocols used to validate them. To address this, we formalize the syntax of a core protocol language, which provides a unified description for the models of biochemical systems being experimented on, together with the discrete events representing the liquid-handling steps of biological protocols. We present both a deterministic and a stochastic semantics to this language, both defined in terms of hybrid processes. In particular, the stochastic semantics captures uncertainties in equipment tolerances, making it a suitable tool for both experimental and computational biologists. We illustrate how the proposed protocol language can be used for automated verification and synthesis of laboratory experiments on case studies from the fields of chemistry and molecular programming
Constructal blade shape in nanofluids
Blade configuration of nanofluids has been proven to perform much better than dispersed configuration for some heat conduction systems. The analytical analysis and numerical calculation are made for the cylinder--shaped and regular-rectangular-prism--shaped building blocks of the blade-configured heat conduction systems (using nanofluids as the heat conduction media) to find the optimal cross-sectional shape for the nanoparticle blade under the same composing materials, composition ratio, volumetric heat generation rate, and total building block volume. The regular-triangular-prism--shaped blade has been proven to perform better than all the other three kinds of blades, namely, the regular-rectangular-prism--shaped blade, the regular-hexagonal-prism--shaped blade, and the cylinder--shaped blade. Thus, the regular-triangular-prism--shaped blade is selected as the optimally shaped blade for the two kinds of building blocks that are considered in this study. It is also proven that the constructal cylinder--regular-triangular-prism building block performs better than the constructal regular-rectangular-prism--regular-triangular-prism building block
An Assessment of Transport Property Estimation Methods for Ammonia–Water Mixtures and Their Influence on Heat Exchanger Size
Stable aqueous dispersion of superparamagnetic iron oxide nanoparticles protected by charged chitosan derivatives
Characterizing the Ordinary Broad-line Type Ic SN 2023pel from the Energetic GRB 230812B
We report observations of the optical counterpart of the long gamma-ray burst (GRB) GRB 230812B and its associated supernova (SN) SN 2023pel. The proximity (z = 0.36) and high energy (E γ,iso ∼ 1053 erg) make it an important event to study as a probe of the connection between massive star core collapse and relativistic jet formation. With a phenomenological power-law model for the optical afterglow, we find a late-time flattening consistent with the presence of an associated SN. SN 2023pel has an absolute peak r-band magnitude of M r = −19.46 ± 0.18 mag (about as bright as SN 1998bw) and evolves on quicker timescales. Using a radioactive heating model, we derive a nickel mass powering the SN of M Ni = 0.38 ± 0.01 M ⊙ and a peak bolometric luminosity of L bol ∼ 1.3 × 1043 erg s−1. We confirm SN 2023pel’s classification as a broad-line Type Ic SN with a spectrum taken 15.5 days after its peak in the r band and derive a photospheric expansion velocity of v ph = 11,300 ± 1600 km s−1 at that phase. Extrapolating this velocity to the time of maximum light, we derive the ejecta mass M ej = 1.0 ± 0.6 M ⊙ and kinetic energy E KE = 1.3 − 1.2 + 3.3 × 10 51 erg . We find that GRB 230812B/SN 2023pel has SN properties that are mostly consistent with the overall GRB-SN population. The lack of correlations found in the GRB-SN population between SN brightness and E γ,iso for their associated GRBs across a broad range of 7 orders of magnitude provides further evidence that the central engine powering the relativistic ejecta is not coupled to the SN powering mechanism in GRB-SN systems
The Pharmacokinetics and Bioavailability of Dihydroartemisinin, meether, Artemether, Artesunic Acid and Artelinic Acid in Rats
Phase, morphological, and magnetic properties of iron oxide nanoparticles extracted from mill scale waste and its surface modification with CTAB surfactant
Solvothermal synthesis of magnetic FexOy/C nanocomposites used as adsorbents for the removal of methylene blue from wastewater
- …
