17 research outputs found

    Axion-like-particle search with high-intensity lasers

    Full text link
    We study ALP-photon-conversion within strong inhomogeneous electromagnetic fields as provided by contemporary high-intensity laser systems. We observe that probe photons traversing the focal spot of a superposition of Gaussian beams of a single high-intensity laser at fundamental and frequency-doubled mode can experience a frequency shift due to their intermittent propagation as axion-like-particles. This process is strongly peaked for resonant masses on the order of the involved laser frequencies. Purely laser-based experiments in optical setups are sensitive to ALPs in the eV\mathrm{eV} mass range and can thus complement ALP searches at dipole magnets.Comment: 25 pages, 2 figure

    SP(k) -- A hydrodynamical simulation-based model for the impact of baryon physics on the non-linear matter power spectrum

    Get PDF
    Upcoming large-scale structure surveys will measure the matter power spectrum to approximately percent level accuracy with the aim of searching for evidence for new physics beyond the standard model of cosmology. In order to avoid biasing our conclusions, the theoretical predictions need to be at least as accurate as the measurements for a given choice of cosmological parameters. However, recent theoretical work has shown that complex physical processes associated with galaxy formation (particularly energetic feedback processes associated with stars and especially supermassive black holes) can alter the predictions by many times larger than the required accuracy. Here we present SP(k), a model for the effects of baryon physics on the non-linear matter power spectrum based on a new large suite of hydrodynamical simulations. Specifically, the ANTILLES suite consists of 400 simulations spanning a very wide range of the ‘feedback landscape’ and show that the effects of baryons on the matter power spectrum can be understood at approaching the percent level in terms of the mean baryon fraction of haloes, at scales of up to k  ≲  10h Mpc−1 and redshifts up to z = 3. For the range of scales and redshifts that will be probed by forthcoming cosmic shear measurements, most of the effects are driven by galaxy group-mass haloes (M ∼ 1013 − 14 M⊙). We present a simple Python implementation of our model, available at https://github.com/jemme07/pyspk, which can be used to incorporate baryon effects in standard gravity-only predictions, allowing for marginalisation over baryon physics within cosmological pipelines

    SP(k) - A hydrodynamical simulation-based model for the impact of baryon physics on the non-linear matter power spectrum

    Get PDF
    Upcoming large-scale structure surveys will measure the matter power spectrum to approximately percent level accuracy with the aim of searching for evidence for new physics beyond the standard model of cosmology. In order to avoid biasing our conclusions, the theoretical predictions need to be at least as accurate as the measurements for a given choice of cosmological parameters. However, recent theoretical work has shown that complex physical processes associated with galaxy formation (particularly energetic feedback processes associated with stars and especially supermassive black holes) can alter the predictions by many times larger than the required accuracy. Here we present SP(k), a model for the effects of baryon physics on the non-linear matter power spectrum based on a new large suite of hydrodynamical simulations. Specifically, the ANTILLES suite consists of 400 simulations spanning a very wide range of the ‘feedback landscape’ and show that the effects of baryons on the matter power spectrum can be understood at approaching the percent level in terms of the mean baryon fraction of haloes, at scales of up to k  ≲  10h Mpc−1 and redshifts up to z = 3. For the range of scales and redshifts that will be probed by forthcoming cosmic shear measurements, most of the effects are driven by galaxy group-mass haloes (M ∼ 1013 − 14 M⊙). We present a simple Python implementation of our model, available at https://github.com/jemme07/pyspk, which can be used to incorporate baryon effects in standard gravity-only predictions, allowing for marginalisation over baryon physics within cosmological pipelines

    Tests of chameleon gravity

    Get PDF
    Theories of modified gravity, where light scalars with non-trivial self-interactions and non-minimal couplings to matter—chameleon and symmetron theories—dynamically suppress deviations from general relativity in the solar system. On other scales, the environmental nature of the screening means that such scalars may be relevant. The highly-nonlinear nature of screening mechanisms means that they evade classical fifth-force searches, and there has been an intense effort towards designing new and novel tests to probe them, both in the laboratory and using astrophysical objects, and by reinterpreting existing datasets. The results of these searches are often presented using different parametrizations, which can make it difficult to compare constraints coming from different probes. The purpose of this review is to summarize the present state-of-the-art searches for screened scalars coupled to matter, and to translate the current bounds into a single parametrization to survey the state of the models. Presently, commonly studied chameleon models are well-constrained but less commonly studied models have large regions of parameter space that are still viable. Symmetron models are constrained well by astrophysical and laboratory tests, but there is a desert separating the two scales where the model is unconstrained. The coupling of chameleons to photons is tightly constrained but the symmetron coupling has yet to be explored. We also summarize the current bounds on f(R) models that exhibit the chameleon mechanism (Hu and Sawicki models). The simplest of these are well constrained by astrophysical probes, but there are currently few reported bounds for theories with higher powers of R. The review ends by discussing the future prospects for constraining screened modified gravity models further using upcoming and planned experiments

    Neutrinos

    Get PDF
    229 pages229 pages229 pagesThe Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms

    The FLAMINGO project: revisiting the S8 tension and the role of baryonic physics

    Get PDF
    A number of recent studies have found evidence for a tension between observations of large-scale structure (LSS) and the predictions of the standard model of cosmology with the cosmological parameters fit to the cosmic microwave background (CMB). The origin of this ‘S8 tension’ remains unclear, but possibilities include new physics beyond the standard model, unaccounted for systematic errors in the observational measurements and/or uncertainties in the role that baryons play. Here, we carefully examine the latter possibility using the new FLAMINGO suite of large-volume cosmological hydrodynamical simulations. We project the simulations onto observable harmonic space and compare with observational measurements of the power and cross-power spectra of cosmic shear, CMB lensing, and the thermal Sunyaev-Zel’dovich (tSZ) effect. We explore the dependence of the predictions on box size and resolution and cosmological parameters, including the neutrino mass, and the efficiency and nature of baryonic ‘feedback’. Despite the wide range of astrophysical behaviours simulated, we find that baryonic effects are not sufficiently large to remove the S8 tension. Consistent with recent studies, we find the CMB lensing power spectrum is in excellent agreement with the standard model, while the cosmic shear power spectrum, tSZ effect power spectrum, and the cross-spectra between shear, CMB lensing, and the tSZ effect are all in varying degrees of tension with the CMB-specified standard model. These results suggest that some mechanism is required to slow the growth of fluctuations at late times and/or on non-linear scales, but that it is unlikely that baryon physics is driving this modification

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Successful Treatment of Avulsion Wound in Leopard (Panthera pardus) using Pulsed Lavage – A Case Report

    Get PDF
    A leopard was referred to the Wildlife Research and Training Centre, Gorewada, Nagpur with a history of extensive wounds on the right and left shoulder. The wound was located on the shoulder bone on both the right and left shoulder, and the spine and caudal angle of the left scapula was exposed. Pulsed lavage along with other supportive therapy was used to manage the case. A 50 ml syringe fitted with an 18 gauge needle to direct the jet. The jet was intermittently pulsed cranio-caudal for 10 minutes five times a day. Pulsed lavage with 1% povidone-iodine in normal saline ensured the efficient removal of dead and necrosed tissue by utilising the pressure and at the same time removing the bacteria by cleansing and dilution. The leopard showed uneventful recovery in 18 days. The need to use antibiotics was by passed with minimal need to restrain the animal
    corecore