202 research outputs found
Seasonality in Human Zoonotic Enteric Diseases: A Systematic Review
BACKGROUND: Although seasonality is a defining characteristic of many infectious diseases, few studies have described and compared seasonal patterns across diseases globally, impeding our understanding of putative mechanisms. Here, we review seasonal patterns across five enteric zoonotic diseases: campylobacteriosis, salmonellosis, vero-cytotoxigenic Escherichia coli (VTEC), cryptosporidiosis and giardiasis in the context of two primary drivers of seasonality: (i) environmental effects on pathogen occurrence and pathogen-host associations and (ii) population characteristics/behaviour. METHODOLOGY/PRINCIPAL FINDINGS: We systematically reviewed published literature from 1960-2010, resulting in the review of 86 studies across the five diseases. The Gini coefficient compared temporal variations in incidence across diseases and the monthly seasonality index characterised timing of seasonal peaks. Consistent seasonal patterns across transnational boundaries, albeit with regional variations was observed. The bacterial diseases all had a distinct summer peak, with identical Gini values for campylobacteriosis and salmonellosis (0.22) and a higher index for VTEC (Gini 0.36). Cryptosporidiosis displayed a bi-modal peak with spring and summer highs and the most marked temporal variation (Gini = 0.39). Giardiasis showed a relatively small summer increase and was the least variable (Gini = 0.18). CONCLUSIONS/SIGNIFICANCE: Seasonal variation in enteric zoonotic diseases is ubiquitous, with regional variations highlighting complex environment-pathogen-host interactions. Results suggest that proximal environmental influences and host population dynamics, together with distal, longer-term climatic variability could have important direct and indirect consequences for future enteric disease risk. Additional understanding of the concerted influence of these factors on disease patterns may improve assessment and prediction of enteric disease burden in temperate, developed countries
Deciphering the Preference and Predicting the Viability of Circular Permutations in Proteins
Circular permutation (CP) refers to situations in which the termini of a protein are relocated to other positions in the structure. CP occurs naturally and has been artificially created to study protein function, stability and folding. Recently CP is increasingly applied to engineer enzyme structure and function, and to create bifunctional fusion proteins unachievable by tandem fusion. CP is a complicated and expensive technique. An intrinsic difficulty in its application lies in the fact that not every position in a protein is amenable for creating a viable permutant. To examine the preferences of CP and develop CP viability prediction methods, we carried out comprehensive analyses of the sequence, structural, and dynamical properties of known CP sites using a variety of statistics and simulation methods, such as the bootstrap aggregating, permutation test and molecular dynamics simulations. CP particularly favors Gly, Pro, Asp and Asn. Positions preferred by CP lie within coils, loops, turns, and at residues that are exposed to solvent, weakly hydrogen-bonded, environmentally unpacked, or flexible. Disfavored positions include Cys, bulky hydrophobic residues, and residues located within helices or near the protein's core. These results fostered the development of an effective viable CP site prediction system, which combined four machine learning methods, e.g., artificial neural networks, the support vector machine, a random forest, and a hierarchical feature integration procedure developed in this work. As assessed by using the hydrofolate reductase dataset as the independent evaluation dataset, this prediction system achieved an AUC of 0.9. Large-scale predictions have been performed for nine thousand representative protein structures; several new potential applications of CP were thus identified. Many unreported preferences of CP are revealed in this study. The developed system is the best CP viability prediction method currently available. This work will facilitate the application of CP in research and biotechnology
Lifestyle and health-related quality of life: A cross-sectional study among civil servants in China
DynaDom: structure-based prediction of T cell receptor inter-domain and T cell receptor-peptide-MHC (class I) association angles
ARABIC SMALL HIGH FOOTNOTE MARKER
In Shaikh 2014a (L2/14-095) and 2014b (L2/14-096), fifteen characters are proposed in order to represent the characters used in Qurans published in Pakistan. The author agrees in principle that most of these characters should be encoded, but with some changes, as proposed below. Proposal Encode the following characters in the Unicode Standard
- …
