3,017 research outputs found

    A hybrid finite element approach to modeling sound radiation from circular and rectangular ducts

    Get PDF
    This is the post-print version of the Article - Copyright @ 2012 Acoustical Society of AmericaA numerical model based on a hybrid finite element method is developed that seeks to join sound pressure fields in interior and exterior regions. The hybrid method is applied to the analysis of sound radiation from open pipes, or ducts, and uses mode matching to couple a finite element discretization of the region surrounding the open end of the duct to wave based modal expansions for adjoining interior and exterior regions. The hybrid method facilitates the analysis of ducts of arbitrary but uniform cross section as well the study of conical flanges and here a modal expansion based on spherical harmonics is applied. Predictions are benchmarked against analytic solutions for the limiting cases of flanged and unflanged circular ducts and excellent agreement between the two methods is observed. Predictions are also presented for flanged and unflanged rectangular ducts, and because the hybrid method retains the sparse banded and symmetric matrices of the traditional finite element method, it is shown that predictions can be obtained within an acceptable time frame even for a three dimensional problem.This study is supported by the U.K. Engineering and Physical Sciences Research Council (EPSRC)

    LAI based trees selection for mid latitude urban developments: A microclimatic study in Cairo, Egypt

    Get PDF
    To study the leaf area index, LAI, based thermal performance in distinguishing trees for Cairo's urban developments, ENVI-met plants database was used as platform for a foliage modeling parameter, the leaf area density, LAD. Two Egyptian trees: Ficus elastica. and Peltophorum pterocarpum were simulated in 2 urban sites with one having no trees, whilst the second is having Ficus nitida trees. Trees LAD values were calculated using flat leaves' trees LAI definition to produce maximum ground solid shadow at peak time. An empirical value of 1 for LAI is applied to numerically introduce LAD values for ENVI-met. Basically, different meteorological records showed improvements for pedestrian comfort and ambient microclimate of the building using E elastica. About 40-50% interception of direct radiation, reductions in surfaces' fluxes around trees and in radiant temperature T-mrt in comparison to base cases gave preferability to E elastica. The lack of soil water prevented evapotranspiration to take place effectively and the reduced wind speeds concluded negligible air temperature differences from both base cases except slightly appeared with the F elastica. Results show that a flat leaves tree if does not validate LAI of 1, the ground shading would not fulfill about 50% direct radiation interception and this value can be used as a reference for urban trees selection. Further simulations were held to investigate LAI value of maximum direct radiation interception. Performing additional simulations, F elastica of LAI of 3 intercepted almost 84% of direct radiation and revealed implications about urban trees in practice and its actual LAI. (C) 2009 Elsevier Ltd. All rights reserved

    Gas leakage and distribution characteristics of methyl bromide and sulfuryl fluoride during fumigations in a pilot flour mill

    Get PDF
    The half-loss time (HLT) is used as an indicator to quantify gas leakage rates during methyl bromide (MB) and sulfuryl fluoride (SF) fumigations. Comparisons of HLTs between three MB and three SF fumigations were quantified in the Hal Ross pilot flour mill, Department of Grain Science and Industry, Kansas State University, USA. The sealing quality or gas tightness of the mill before each fumigation was verified by a pressurization test. Fumigant concentrations during the six fumigations were monitored continuously at 30 locations among the five mill floors during the 24 h fumigation period. A weather station on the mill roof monitored barometric pressure, wind speed and direction, temperature, and relative humidity. A data logger on each mill floor recorded temperature and relative humidity. The pressurization test showed that the relationship between airflow rate and building static pressure varied among the fumigations despite the same areas being sealed by two separate fumigation service providers due to environmental conditions not being identical among the fumigations. Concentrations of both fumigants within the mill ranged from 2 to 7 g/m³ . The observed HLTs for the MB and SF fumigations were in the range of 3.61 to 28.64 h and 9.97 to 31.65 h, respectively, and were inversely related only to wind speeds during fumigation and not any other environmental conditions recorded. In our study, the fumigant leakage rate was found to be predominantly a function of wind speed rather than inherent gas characteristics of MB and SF

    Unique Thermal Properties of Clothing Materials.

    Get PDF
    Cloth wearing seems so natural that everyone is self-deemed knowledgeable and has some expert opinions about it. However, to clearly explain the physics involved, and hence to make predictions for clothing design or selection, it turns out to be quite challenging even for experts. Cloth is a multiphased, porous, and anisotropic material system and usually in multilayers. The human body acts as an internal heat source in a clothing situation, thus forming a temperature gradient between body and ambient. But unlike ordinary engineering heat transfer problems, the sign of this gradient often changes as the ambient temperature varies. The human body also perspires and the sweat evaporates, an effective body cooling process via phase change. To bring all the variables into analysis quickly escalates into a formidable task. This work attempts to unravel the problem from a physics perspective, focusing on a few rarely noticed yet critically important mechanisms involved so as to offer a clearer and more accurate depiction of the principles in clothing thermal comfort

    An adaptive thermal comfort model for hot humid South-East Asia

    Full text link
    The present paper presents a full procedure to develop an adaptive comfort model for South-East Asia. Meta-analysis on large number of observations from field surveys which were conducted in this region was employed. Standardization and bias control of the database were fully reported. Statistical tests of significance and weighted regression method applied in the analyses strengthened the reliability of the findings. This paper found a great influence of ‘Griffiths constant’ on the establishment of adaptive comfort equation and proposed an appropriate value. The adaptive comfort model generated is applicable to naturally ventilated building under hot and humid conditions of South-East Asia. The mean neutral comfort temperature (operative temperature, effective temperature, standard effective temperature) in naturally ventilated and air-conditioned building was compared and the differences have been discussed. The similar neutral standard effective temperature in both naturally ventilated and air-conditioned building proposes a new idea to implement SET* into building simulation tools to assess thermal comfort without the attention of building classification. Through the analysis, the effectiveness of behavioral adaptive actions on occupant’s thermal perception has been argued. The extended PMV-PPD model for hot humid conditions was examined and its applicability was recommended. Other comfort related issues, the differences and similarities between various adaptive comfort models were also addressed.Peer reviewe

    Coupled TRNSYS-CFD simulations evaluating the performance of PCM plate heat exchangers in an Airport Terminal building displacement conditioning system

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below. Copyright @ 2013 Elsevier.This paper reports on the energy performance evaluation of a displacement ventilation (DV) system in an airport departure hall, with a conventional DV diffuser and a diffuser retrofitted with a phase change material storage heat exchanger (PCM-HX). A TRNSYS-CFD quasi-dynamic coupled simulation method was employed for the analysis, whereby TRNSYS® simulates the HVAC and PID control system and ANSYS FLUENT® is used to simulate the airflow inside the airport terminal space. The PCM-HX is also simulated in CFD, and is integrated into the overall model as a secondary coupled component in the TRNSYS interface. Different night charging strategies of the PCM-HX were investigated and compared with the conventional DV diffuser. The results show that: i) the displacement ventilation system is more efficient for cooling than heating a space; ii) the addition of a PCM-HX system reduces the heating energy requirements during the intermediate and summer periods for specific night charging strategies, whereas winter heating energy remains unaffected; iii) the PCM-HX reduces cooling energy requirements, and; iv) maximum energy savings of 34% are possible with the deployment of PCM-HX retrofitted DV diffuser.This work was funded by the UK Engineering and Physical Sciences Research Council (EPSRC), Grant No: EP/H004181/1
    corecore