706 research outputs found
Effects of Redispersible Polymer Powder on Mechanical and Durability Properties of Preplaced Aggregate Concrete with Recycled Railway Ballast
The rapid-hardening method employing the injection of calcium sulfoaluminate (CSA) cement mortar into voids between preplaced ballast aggregates has recently emerged as a promising approach for the renovation of existing ballasted railway tracks to concrete tracks. This method typically involves the use of a redispersible polymer powder to enhance the durability of the resulting recycled aggregate concrete. However, the effects of the amount of polymer on the mechanical and durability properties of recycled ballast aggregate concrete were not clearly understood. In addition, the effects of the cleanness condition of ballast aggregates were never examined. This study aimed at investigating these two aspects through compression and flexure tests, shrinkage tests, freezing-thawing resistance tests, and optical microscopy. The results revealed that an increase in the amount of polymer generally decreased the compressive strength at the curing age of 28 days. However, the use of a higher polymer ratio enhanced the modulus of rupture, freezing-thawing resistance, and shrinkage resistance, likely because it improved the microstructure of the interfacial transition zones between recycled ballast aggregates and injected mortar. In addition, a higher cleanness level of ballast aggregates generally improved the mechanical and durability qualities of concrete
Time-dependent fibre pull-out behaviour in self-compacting concrete
In the present study, the effectiveness of a fibre as an element for transferring stresses across cracks under a sustained
load was assessed. Single fibre pull-out creep tests were performed, in which fibre slip was monitored as a function
of the time. The influence of the fibre orientation angle (0, 30 and 60 degrees), as well as pre-imposed fibre slip levels,
spr, 0.3 and 0.5 mm on the creep response was investigated. Additionally, instantaneous fibre pull-out tests were carried
out on undamaged-bond specimens in order to quantify the effects of the pull-out creep behaviour. The damage
introduced by the pre-slip levels in the bond of the fibre/matrix interface influenced the long-term fibre pull-out
behaviour and, consequently, accelerated the creep rate. However, the assembled pull-out creep behaviour did not
differ considerably from the instantaneous pull-out behaviour for the adopted pre-imposed fibre slip levels.This work is supported by the FEDER funds through the Operational Program for Competitiveness Factors -
COMPETE and National Funds through FCT - Portuguese Foundation for Science and Technology under the project 18 SlabSys-HFRC-PTDC/ECM/120394/2010. The authors would like to acknowledge the materials supplied by Radmix and Maccaferri (fibres), SECIL (cement), SIKA and BASF (superplasticizers), Omya Comital (limestone filler), and Pegop (Fly ash).info:eu-repo/semantics/publishedVersio
Antimicrobial and antioxidant screening of curcumin and pyrocatechol in the prevention of biodiesel degradation: oxidative stability
Owing to its hygroscopicity biodiesel may accumulate water during storage, which becomes favorable to the growth of microorganisms. In order to control microbial contamination, use of various chemical biocides has been studied. However, the addition of a natural substance simultaneously with antioxidant and microbial growth inhibition could prove advantageous in the prevention of biodiesel oxidation and microbial contamination. Curcumin and pyrocatechol are antioxidant agents, which also exhibit microbial growth inhibition abilities. This research effort aimed at evaluating the addition of curcumin and pyrocatechol to biodiesel produced from various vegetable sources (waste frying oil, soybean oil, cottonseed oil, sesame oil, macaúba almond oil and microalgae oil). The combined addition of 1% (w/w) water and curcumin (viz. 0.2% (w/w) for biodiesel from spent frying oil, 0.5% (w/w) for biodiesel from soybean oil, 0.1% (w/w) for biodiesel from cotton seed oil, 0.5% (w/w) for biodiesel from sesame seed oil, 0.2% (w/w) for biodiesel from macaúba almond oil, and 0.2% (w/w) for biodiesel from microalgae oil) were those processing variables that promoted the best fungistatic and antioxidant effects, allowing maintenance of an unfavorable environment for microbial growth in biodiesel inoculated with the ubiquitous filamentous mold Paecilomyces variotii Bainier.Project funding by CNPq (National Council for Scientific and Technological Development - Brazil) (CNPq Ref. No. 404808/ 2013-1, Project ‘Studies on Biodiesel: Development of analytical methods for the characterization and quality control, and research of new natural additives to improve the quality of this biofuel’), is hereby gratefully acknowledged. This work received support from CNPq, National Council for Scientific and Technological Development Brazil, in the form of Research Productivity (PQ) fellowships granted to Victor M. Balcão (Ref. No. 306113/2014-7) and Marco V. Chaud (Ref. No. 309598/2014-1). The authors have no conflicts of interest whatsoever to declare
Flexural strengthening of RC continuous slab strips using NSM CFRP laminates
To assess the effectiveness of the near surface mounted (NSM) technique, in terms of load carrying and moment
redistribution capacities, for the flexural strengthening of continuous reinforced concrete (RC) slabs, an
experimental program was carried out. The experimental program is composed of three series of three slab strips of
two equal span length, in order to verify the possibility of increasing the negative (at the intermediate support
region) resisting bending moment in 25% and 50% and maintaining moment redistribution levels of 15%, 30% and
45%. Though the flexural resistance of the NSM strengthened sections has exceeded the target values, the moment
redistribution was relatively low, and the increase of the load carrying capacity of the strengthened slabs did not
exceed 25%. This experimental program is analyzed to highlight the possibilities of NSM technique for statically
indeterminate RC slabs in terms of flexural strengthening effectiveness, moment redistribution and ductility
performance. Using a FEM-based computer program, which predictive performance was appraised using the
obtained experimental results, a high effective NSM flexural strengthening strategy is proposed, capable of
enhancing the slab’s load carrying capacity and maintaining high levels of ductility.The study reported in this paper forms a part of the research program "CUTINEMO - Carbon fiber laminates applied according to the near surface mounted technique to increase the flexural resistance to negative moments of continuous reinforced concrete structures" supported by FCT, PTDC/ECM/73099/2006. The authors wish to acknowledge the support also provided by the S&P, Casais and Artecanter Companies. The first Author acknowledges the financial support of National Council for Scientific and Technological Development (CNPq) - Brazil, Ph.D. Grant no. 200953/2007-9. The second Author wishes to acknowledge the support provided by FCT, by means of the SFRH/BSAB/818/2008 and SFRH/BSAB/913/2009 sabbatical grants
A numerical investigation on the fire response of a steel girder bridge
The response of bridges subject to fire is an under researched topic despite the number of bridge failures caused by fire. Since available data shows that steel girder bridges are especially vulnerable to fire, this paper delves into their fire response by analyzing with a 3D numerical model the response of a typical bridge of 12.20 m span length. A parametric study is performed considering: (1) two possibilities for the axial restraint of the bridge deck, (2) four types of structural steel for the girders (carbon steel and stainless steel grades 1.4301, 1.4401, and 1.4462), (3) three different constitutive models for carbon steel, (4) four live loads, and (5) two alternative fire loads (the hydrocarbon fire defined by Eurocode 1 and a fire corresponding to a real fire event). Results show that restraint to deck expansion coming from an adjacent span or abutment should be considered in the numerical model. In addition, times to collapse are very small when the bridge girders are built with carbon steel (between 8.5 and 18 min) but they can almost double if stainless steel is used for the girders. Therefore, stainless steel is a material to consider for steel girder bridges in a high fire risk situation, especially if the bridge is located in a corrosive environment and its aesthetics deserves special attention. The methodology developed in this paper and the results obtained are useful for researchers and practitioners interested in developing and applying a performance-based approach for the design of bridges against fire. © 2012 Elsevier Ltd. All rights reserved.Funding for this research has been provided to Dr. Paya-Zaforteza by the Spanish Ministry of Education (contract number EX-2008-0669 of the Program for Postdoctoral Stays), the Spanish Ministry of Economy and Competitiveness (research project BIA 2011-27104) and the Universitat Politecnica de Valencia (Research and Development Support Program PAID-06-11). Funding has also been provided to Dr. Maria Garlock by the National Science Foundation (NSF) under award number CMMI-1068252. All opinions expressed in this paper are the authors' and do not necessarily reflect the policies and views of the sponsors.Paya-Zaforteza, I.; Garlock, ME. (2012). A numerical investigation on the fire response of a steel girder bridge. Journal of Constructional Steel Research. 75:93-103. https://doi.org/10.1016/j.jcsr.2012.03.012S931037
Effect of mixture proportions on the drying shrinkage and permeation properties of high strength concrete containing class F fly ash
Sustainability of concrete can be improved by using large volume of fly ash as a replacement of cement and by ensuring improved durability of concrete. Durability of concrete containing large volume of class F fly ash is dependent on the design of mixture proportions. This paper presents an experimental study on the effect of mixture proportions on the drying shrinkage and permeation properties of high strength concrete containing large volume local class F fly ash. Concrete mixtures were designed with and without adjustments in the water to binder ratio (w/b) and the total binder content to take into account the incorporation of fly ash up to 40% of total binder. Concretes, in which the mixture proportions were adjusted for fly ash inclusion achieved equivalent strength of the control concrete and showed enhanced properties of drying shrinkage, sorptivity, water permeability and chloride penetration as compared to the control concrete. The improvement of durability properties was less significant when no adjustments were made to the w/b ratio and total binder content. The results show the necessity of the adjustments in mixture proportions of concrete to achieve improved durability properties when using class F fly ash as a cement replacement
Value added utilization of by-product electric furnace ferronickel slag as construction materials: A review
This paper reviews the potential use of electric furnace ferronickel slag (FNS) as a fine aggregate and binder in Portland cement and geopolymer concretes. It has been reported that the use of FNS as a fine aggregate can improve the strength and durability properties of concrete. Use of some FNS aggregates containing reactive silica may potentially cause alkali-silica reaction (ASR) in Portland cement concrete. However, the inclusion of supplementary cementitious materials (SCM) such as fly ash and blast furnace slag as partial cement replacement can effectively mitigate the ASR expansion. When finely ground FNS is used with cement, it shows pozzolanic reaction, which is similar to that of other common SCMs such as fly ash. Furthermore, 20% FNS powder blended geopolymer showed greater strength and durability properties as compared to 100% fly ash based geopolymers. The utilization of raw FNS in pavement construction is reported as a useful alternative to natural aggregate. Therefore, the use of by-product FNS in the construction industry will be a valuable step to help conservation of natural resources and add sustainability to infrastructures development. This paper presents a comprehensive review of the available results on the effects of FNS in concrete as aggregate and binder, and provides some recommendations for future research in this field
Development of a composite prototype with GFRP profiles and sandwich panels used as a floor module of an emergency house
A series of experimental tests carried out on a composite prototype to be used as a floor module of an emergency house is presented in this paper. The prototype comprises a frame structure formed by GFRP pultruded profiles, and two sandwich panels constituted by GFRP skins and a polyurethane foam core that configures the floor slab. The present work is part of the project “ClickHouse – Development of a prefabricated emergency house prototype made of composites materials” and investigates the feasibility of the assemblage process of the prototype and performance to support load conditions typical of residential houses. Furthermore, sandwich panels are also independently tested, analysing their flexural response, failure mechanisms and creep behaviour. Obtained results confirm the good performance of the prototype to be used as floor module of an emergency housing, with a good mechanical behaviour and the capacity of being transported to the disaster areas in the form of various low weight segments, and rapidly installed. Additionally, finite element simulations were carried out to assess the stress distributions in the prototype components and to evaluate the global behaviour and load transfer mechanism of the connections.Quadro de Referência Estratégica Nacional (QREN)FEDER funds through the Operational Program for Competitiveness Factors – COMPETE and the Portuguese National Agency of Innovation (ADI) - project no. 3896
The impact of natural and anthropogenic Dissolved Organic Carbon (DOC), and pH on the toxicity of triclosan to the crustacean Gammarus pulex (L.).
Regulatory ecotoxicology testing rarely accounts for the influence of natural water chemistry on the bioavailability and toxicity of a chemical. Therefore, this study identifies whether key omissions in relation to Dissolved Organic Carbon (DOC) and pH have an impact on measured effect concentrations (EC). Laboratory ecotoxicology tests were undertaken for the widely used antimicrobial compound triclosan, using adult Gammarus pulex (L.), a wild-type amphipod using synthetic fresh water, humic acid solutions and wastewater treatment works effluent. The toxicity of triclosan was tested at two different pHs of 7.3 and 8.4, with and without the addition of DOC and 24 and 48hour EC values with calculated 95% confidence intervals calculated. Toxicity tests undertaken at a pH above triclosan's pKa and in the presents of humic acid and effluent, containing 11 and 16mgL(-1) mean DOC concentrations respectively, resulted in significantly decreased triclosan toxicity. This was most likely a result of varying triclosan speciation and complexation due to triclosan's pKa and high hydrophobicity controlling its bioavailability. The mean 48hour EC50 values varied between 0.75±0.45 and 1.93±0.12mgL(-1) depending on conditions. These results suggest that standard ecotoxicology tests can cause inaccurate estimations of triclosan's bioavailability and subsequent toxicity in natural aquatic environments. These results highlight the need for further consideration regarding the role that water chemistry has on the toxicity of organic contaminants and how ambient environmental conditions are incorporated into the standard setting and consenting processes in the future
- …
